forked from benroberts999/ampsci
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Cs_basicExample.out
178 lines (161 loc) · 6.74 KB
/
Cs_basicExample.out
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
********************************************************************************
Atom {
Z = Cs;
A = 133;
}
HartreeFock {
core = [Xe];
valence = 7sp;
}
Grid {
r0 = 1e-6;
rmax = 120.0;
num_points = 4000;
}
Module::Tests { }
Module::matrixElements {
operator = E1;
rpa = TDHF;
omega = 0.0;
}
Module::matrixElements {
operator = hfs;
off-diagonal = false;
options { nuc_mag = pointlike; }
}
Running for Cs, Z=55 A=133
Fermi nucleus; r_rms = 4.8041, c_hdr = 5.67073, t = 2.3
Log-linear (b=40) grid: 1e-06 -> 120.0, N=4000, du=0.216
========================================================
Hartree-Fock
Core : it: 28 eps=8.9e-14 for 5p+
Val : it: 41 eps=0.0e+00 for 6s+ [ 41 eps=0e+00 for 6s+]
Cs-133
Core: [Xe] V^N-1
state k Rinf its eps En (au) En (/cm)
0 1s_1/2 -1 0.6 2 3e-27 -1330.118843150 -291927342.769
1 2s_1/2 -1 1.6 2 2e-24 -212.564489924 -46652513.067
2 2p_1/2 1 1.7 2 8e-25 -199.429496687 -43769715.268
3 2p_3/2 -2 1.7 2 1e-24 -186.436606380 -40918105.458
4 3s_1/2 -1 3.5 2 9e-23 -45.969746145 -10089193.089
5 3p_1/2 1 3.7 2 6e-23 -40.448305904 -8877377.028
6 3p_3/2 -2 3.8 2 6e-23 -37.894311672 -8316840.085
7 3d_3/2 2 4.4 2 4e-23 -28.309508840 -6213219.017
8 3d_5/2 -3 4.5 2 4e-23 -27.775165362 -6095944.179
9 4s_1/2 -1 7.7 2 1e-21 -9.512819880 -2087822.636
10 4p_1/2 1 8.7 2 7e-22 -7.446283825 -1634270.397
11 4p_3/2 -2 9.0 2 8e-22 -6.920999966 -1518983.916
12 4d_3/2 2 12.8 2 5e-22 -3.485618748 -765004.890
13 4d_5/2 -3 13.0 2 5e-22 -3.396901358 -745533.673
14 5s_1/2 -1 19.9 2 6e-22 -1.489804384 -326974.268
15 5p_1/2 1 25.7 2 3e-22 -0.907897399 -199260.447
16 5p_3/2 -2 26.8 2 2e-22 -0.840338936 -184433.078
E_c = -7786.644931
Valence: CsI
state k Rinf its eps En (au) En (/cm) En (/cm)
0 6s_1/2 -1 69.7 1 0e+00 -0.127368056 -27954.057 0.00
1 7s_1/2 -1 109.3 1 0e+00 -0.055187354 -12112.224 15841.83
2 6p_1/2 1 86.1 1 0e+00 -0.085615865 -18790.510 9163.55
3 7p_1/2 1 120.0 1 0e+00 -0.042021380 -9222.627 18731.43
4 6p_3/2 -2 87.2 1 0e+00 -0.083785459 -18388.783 9565.27
5 7p_3/2 -2 120.0 1 0e+00 -0.041368036 -9079.234 18874.82
--------------------------------------------------------------------------------
Module: Module::Tests
Test orthonormality:
cc <2s+|5s+> = 2.3e-06
cv <3s+|6s+> = 3.1e-06
vv <6p-|7p-> = 2.3e-15
Testing wavefunctions: <n|H|n> (numerical error)
< 1-1|H| 1-1> = -1330.11884403352, E = -1330.11884314981; 7e-10
< 2-1|H| 2-1> = -212.56449004752, E = -212.56448992406; 6e-10
< 2 1|H| 2 1> = -199.42949671404, E = -199.42949668698; 1e-10
< 2-2|H| 2-2> = -186.43660641313, E = -186.43660637985; 2e-10
< 3-1|H| 3-1> = -45.96974617701, E = -45.96974614468; 7e-10
< 3 1|H| 3 1> = -40.44830591809, E = -40.44830590440; 3e-10
< 3-2|H| 3-2> = -37.89431168613, E = -37.89431167223; 4e-10
< 3 2|H| 3 2> = -28.30950885770, E = -28.30950884008; 6e-10
< 3-3|H| 3-3> = -27.77516538188, E = -27.77516536231; 7e-10
< 4-1|H| 4-1> = -9.51281988751, E = -9.51281987965; 8e-10
< 4 1|H| 4 1> = -7.44628382974, E = -7.44628382451; 7e-10
< 4-2|H| 4-2> = -6.92099997074, E = -6.92099996569; 7e-10
< 4 2|H| 4 2> = -3.48561875395, E = -3.48561874816; 2e-09
< 4-3|H| 4-3> = -3.39690136346, E = -3.39690135782; 2e-09
< 5-1|H| 5-1> = -1.48980438587, E = -1.48980438416; 1e-09
< 5 1|H| 5 1> = -0.90789740047, E = -0.90789739917; 1e-09
< 5-2|H| 5-2> = -0.84033893697, E = -0.84033893570; 2e-09
4d_3/2: eps=1.6618e-09
--------------
< 6-1|H| 6-1> = -0.12736805588, E = -0.12736805585; 2e-10
< 7-1|H| 7-1> = -0.05518735402, E = -0.05518735401; 2e-10
< 6 1|H| 6 1> = -0.08561586486, E = -0.08561586486; -4e-12
< 7 1|H| 7 1> = -0.04202137979, E = -0.04202137979; -3e-12
< 6-2|H| 6-2> = -0.08378545940, E = -0.08378545940; 1e-15
< 7-2|H| 7-2> = -0.04136803574, E = -0.04136803574; -1e-14
6s_1/2: eps=2.40083e-10
--------------
Testing boundaries r0 and pinf: R = f(r)/f_max
State R(r0) R(pinf) pinf/Rinf
1s_1/2: 2e-04 3e-07 2480/ 0.64
2s_1/2: 1e-04 4e-08 2654/ 1.61
2p_1/2: 9e-08 1e-26 2661/ 1.67
2p_3/2: 2e-09 1e-06 2667/ 1.72
3s_1/2: 1e-04 3e-06 2805/ 3.47
3p_1/2: 6e-08 6e-07 2818/ 3.70
3p_3/2: 1e-09 2e-26 2825/ 3.83
3d_3/2: 1e-13 7e-27 2855/ 4.44
3d_5/2: 3e-15 7e-27 2857/ 4.49
4s_1/2: 6e-05 4e-26 2972/ 7.70
4p_1/2: 4e-08 3e-08 2999/ 8.69
4p_3/2: 8e-10 3e-26 3008/ 9.05
4d_3/2: 9e-14 1e-26 3090/ 12.82
4d_5/2: 2e-15 1e-26 3093/ 12.98
5s_1/2: 4e-05 7e-26 3204/ 19.89
5p_1/2: 2e-08 4e-26 3278/ 25.67
5p_3/2: 5e-10 4e-26 3291/ 26.78
--------------
6s_1/2: 2e-05 2e-12 3667/ 69.75
7s_1/2: 1e-05 2e-11 3933/109.27
6p_1/2: 8e-09 3e-12 3782/ 86.15
7p_1/2: 7e-09 2e-10 4000/120.00
6p_3/2: 2e-10 4e-12 3789/ 87.18
7p_3/2: 1e-10 3e-10 4000/120.00
--------------
--------------------------------------------------------------------------------
Module: Module::matrixElements
Matrix Elements - Operator: E1
Reduced matrix elements
Units: |e|aB
Including RPA: TDHF method
TDHF E1 (w=0.0000): 15 7.5e-10 [3p+,d-]
a b w_ab t0_ab +RPA
6p- 6s+ 0.0417522 -5.277687e+00 -4.974408e+00
7p- 6s+ 0.0853467 -3.717393e-01 -2.387249e-01
6p+ 6s+ 0.0435826 7.426435e+00 7.013085e+00
7p+ 6s+ 0.0860000 6.947392e-01 5.087453e-01
6p- 7s+ -0.0304285 4.413140e+00 4.449367e+00
7p- 7s+ 0.0131660 -1.100887e+01 -1.092107e+01
6p+ 7s+ -0.0285981 -6.671016e+00 -6.712221e+00
7p+ 7s+ 0.0138193 1.534480e+01 1.522745e+01
matrixElements: T = 1.68 s
--------------------------------------------------------------------------------
Module: Module::matrixElements
Hyperfine structure: Cs, Z=55 A=133
K=1 (magnetic dipole)
Using pointlike nuclear distro for F(r)
w/ r_N = 0fm = 0au (r_rms=0fm)
Points inside nucleus: 0
mu = 2.5778, I = 3.5, g = 0.736514
Matrix Elements - Operator: hfs1
Hyperfine A constants (magnetic type), K=1
Units: MHz
Including RPA: TDHF method
TDHF hfs1 (w=0.0000): 30 3.6e-10 [4d-,s+]
a b w_ab t0_ab +RPA
6s+ 6s+ 0.0000000 1.431341e+03 1.725253e+03
7s+ 7s+ 0.0000000 3.932988e+02 4.732343e+02
6p- 6p- 0.0000000 1.607564e+02 2.012620e+02
7p- 7p- 0.0000000 5.755858e+01 7.152823e+01
6p+ 6p+ 0.0000000 2.387720e+01 4.276679e+01
7p+ 7p+ 0.0000000 8.625592e+00 1.533223e+01
matrixElements: T = 2.27 s
ampsci: T = 4.40 s