forked from TheAlgorithms/Go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
genetic.go
197 lines (172 loc) · 6.04 KB
/
genetic.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// Package genetic provides functions to work with strings
// using genetic algorithm. https://en.wikipedia.org/wiki/Genetic_algorithm
//
// Author: D4rkia
package genetic
import (
"errors"
"fmt"
"math/rand"
"sort"
"strconv"
"time"
"unicode/utf8"
)
// Population item represent a single step in the evolution process.
// One can think of population item as a single species.
// Key stands for the actual data entity of the species, which is a string
// in current implementation. Key can be interpreted as species DNA.
// Value shows how close this species to the desired target, where 1 means,
// that species DNA equals to the targeted one, 0 for no matchings in the DNA.
//
// **Note** In the current implementation species DNA length is suppose to be
// equal to the target length for algorithm to work.
type PopulationItem struct {
Key string
Value float64
}
// Conf stands for configurations set provided to GeneticString function.
type Conf struct {
// Maximum size of the population.
// Bigger could be faster but more memory expensive.
PopulationNum int
// Number of elements selected in every generation for evolution
// the selection takes. Place from the best to the worst of that
// generation must be smaller than PopulationNum.
SelectionNum int
// Probability that an element of a generation can mutate changing one of
// its genes this guarantees that all genes will be used during evolution.
MutationProb float64
// Enables debugging output to the console.
Debug bool
}
// Result structure contains generation process statistics, as well as the
// best resulted population item.
type Result struct {
// Number of generations steps performed.
Generation int
// Number of generated population items.
Analyzed int
// Result of generation with the best Value.
Best PopulationItem
}
// GeneticString generates PopulationItem based on the imputed target
// string, and a set of possible runes to build a string with. In order
// to optimise string generation additional configurations can be provided
// with Conf instance. Empty instance of Conf (&Conf{}) can be provided,
// then default values would be set.
//
// Link to the same algorithm implemented in python:
// https://github.com/TheAlgorithms/Python/blob/master/genetic_algorithm/basic_string.py
func GeneticString(target string, charmap []rune, conf *Conf) (*Result, error) {
populationNum := conf.PopulationNum
if populationNum == 0 {
populationNum = 200
}
selectionNum := conf.SelectionNum
if selectionNum == 0 {
selectionNum = 50
}
// Verify if 'populationNum' s bigger than 'selectionNum'
if populationNum < selectionNum {
return nil, errors.New("populationNum must be bigger than selectionNum")
}
mutationProb := conf.MutationProb
if mutationProb == .0 {
mutationProb = .4
}
debug := conf.Debug
// Just a seed to improve randomness required by the algorithm
rnd := rand.New(rand.NewSource(time.Now().UnixNano()))
// Verify that the target contains no genes besides the ones inside genes variable.
for position, r := range target {
invalid := true
for _, n := range charmap {
if n == r {
invalid = false
}
}
if invalid {
message := fmt.Sprintf("character not available in charmap at position: %v", position)
return nil, errors.New(message)
}
}
// Generate random starting population
pop := make([]PopulationItem, populationNum)
for i := 0; i < populationNum; i++ {
key := ""
for x := 0; x < utf8.RuneCountInString(target); x++ {
choice := rnd.Intn(len(charmap))
key += string(charmap[choice])
}
pop[i] = PopulationItem{key, 0}
}
// Just some logs to know what the algorithms is doing
gen, generatedPop := 0, 0
// This loop will end when we will find a perfect match for our target
for {
gen++
generatedPop += len(pop)
// Random population created now it's time to evaluate
for i, item := range pop {
pop[i].Value = 0
itemKey, targetRune := []rune(item.Key), []rune(target)
for x := 0; x < len(target); x++ {
if itemKey[x] == targetRune[x] {
pop[i].Value++
}
}
pop[i].Value = pop[i].Value / float64(len(targetRune))
}
sort.SliceStable(pop, func(i, j int) bool { return pop[i].Value > pop[j].Value })
// Check if there is a matching evolution
if pop[0].Key == target {
break
}
// Print the best resultPrint the Best result every 10 generations
// just to know that the algorithm is working
if debug && gen%10 == 0 {
fmt.Println("Generation:", strconv.Itoa(gen), "Analyzed:", generatedPop, "Best:", pop[0])
}
// Generate a new population vector keeping some of the best evolutions
// Keeping this avoid regression of evolution
var popChildren []PopulationItem
popChildren = append(popChildren, pop[0:int(selectionNum/3)]...)
// This is Selection
for i := 0; i < int(selectionNum); i++ {
parent1 := pop[i]
// Generate more child proportionally to the fitness score
nChild := (parent1.Value * 100) + 1
if nChild >= 10 {
nChild = 10
}
for x := 0.0; x < nChild; x++ {
parent2 := pop[rnd.Intn(selectionNum)]
// Crossover
split := rnd.Intn(utf8.RuneCountInString(target))
child1 := append([]rune(parent1.Key)[:split], []rune(parent2.Key)[split:]...)
child2 := append([]rune(parent2.Key)[:split], []rune(parent1.Key)[split:]...)
// Clean fitness value
// Mutate
if rnd.Float64() < mutationProb {
child1[rnd.Intn(len(child1))] = charmap[rnd.Intn(len(charmap))]
}
if rnd.Float64() < mutationProb {
child2[rnd.Intn(len(child2))] = charmap[rnd.Intn(len(charmap))]
}
// Push into 'popChildren'
popChildren = append(popChildren, PopulationItem{string(child1), 0})
popChildren = append(popChildren, PopulationItem{string(child2), 0})
// Check if the population has already reached the maximum value and if so,
// break the cycle. If this check is disabled the algorithm will take
// forever to compute large strings but will also calculate small string in
// a lot fewer generationsù
if len(popChildren) >= selectionNum {
break
}
}
}
pop = popChildren
}
return &Result{gen, generatedPop, pop[0]}, nil
}