forked from HumanSignal/label-studio-ml-backend
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_api.py
68 lines (59 loc) · 3.14 KB
/
test_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""
This file contains tests for the API of your model. You can run these tests by installing test requirements:
```bash
pip install -r requirements-test.txt
```
Then execute `pytest` in the directory of this file.
- Change `NewModel` to the name of the class in your model.py file.
- Change the `request` and `expected_response` variables to match the input and output of your model.
"""
import pytest
import json
from model import GLiNERModel
@pytest.fixture
def client():
from _wsgi import init_app
app = init_app(model_class=GLiNERModel)
app.config['TESTING'] = True
with app.test_client() as client:
yield client
def test_predict(client):
request = {
'tasks': [{'id': 6,
'data': {'id': '5316', 'sample_id': '83dd3f62-4dd5-45eb-8626-ee8539963194',
'tokens': ['atomoxetine', '[', 'oral', 'suspension', ']', 'norepinephrine', 'reuptake',
'inhibitor'],
'ner_tags': ['B-Medication/Vaccine', 'O', 'O', 'O', 'O', 'O', 'O', 'O'],
'ner_tags_index': [63, 0, 0, 0, 0, 0, 0, 0],
'text': 'atomoxetine [ oral suspension ] norepinephrine reuptake inhibitor'},
'meta': {},
'created_at': '2024-04-13T19:22:37.153686Z',
'updated_at': '2024-05-03T00:03:22.356871Z',
'is_labeled': False,
'overlap': 1,
'inner_id': 6,
'total_annotations': 1,
'cancelled_annotations': 0,
'total_predictions': 0,
'comment_count': 0,
'unresolved_comment_count': 0,
'last_comment_updated_at': None,
'project': 2,
'updated_by': 1,
'file_upload': None,
'comment_authors': [],
'predictions': [],
}],
# Your labeling configuration here
'label_config': '<View> \\n <Labels name="label" toName="text">\\n<Label value="Medication/Vaccine" background="red"/>\\n<Label value="MedicalProcedure" background="blue"/>\\n<Label value="AnatomicalStructure" background="orange"/>\\n<Label value="Symptom" background="green"/>\\n<Label value="Disease" background="purple"/>\\n</Labels>\\n<Text name="text" value="$text"/>\\n</View>'
}
expected_response = {"results": [{"model_version": "GLiNERModel-v0.0.1", "result": [
{"from_name": "label", "score": 0.9220, "to_name": "text", "type": "labels",
"value": {"end": 11, "labels": ["Medication/Vaccine"], "start": 0, "text": "atomoxetine"}},
{"from_name": "label", "score": 0.7053, "to_name": "text", "type": "labels",
"value": {"end": 65, "labels": ["Medication/Vaccine"], "start": 32,
"text": "norepinephrine reuptake inhibitor"}}], "score": 0.7053}]}
response = client.post('/predict', data=json.dumps(request), content_type='application/json')
assert response.status_code == 200
response = json.loads(response.data)
assert expected_response == response