forked from HumanSignal/label-studio-ml-backend
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdocker-compose.yml
50 lines (49 loc) · 2.05 KB
/
docker-compose.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
version: "3.8"
services:
llm_interactive:
container_name: llm_interactive
image: heartexlabs/label-studio-ml-backend:llm-master
build:
context: .
args:
TEST_ENV: ${TEST_ENV}
environment:
- MODEL_DIR=/data/models
# Specify openai model provider: "openai", "azure", or "ollama"
- OPENAI_PROVIDER=openai
# Specify API key for openai or azure
- OPENAI_API_KEY=
# Specify model name for openai or azure (by default it uses "gpt-3.5-turbo")
- OPENAI_MODEL=gpt-3.5-turbo
# Internal prompt template for the model is:
# **Source Text**:\n\n"{text}"\n\n**Task Directive**:\n\n"{prompt}"
# if you want to specify task data keys in the prompt (i.e. input <TextArea name="$PROMPT_PREFIX..."/>, set this to 0
- USE_INTERNAL_PROMPT_TEMPLATE=1
# You can define the default prompt to be used before the user input
# Can be the path to the file with the prompt or the prompt itself
# ! Note that USE_INTERNAL_PROMPT_TEMPLATE should be set to 0 in this case
- DEFAULT_PROMPT=
# Prompt prefix for the TextArea component in the frontend to be used for the user input
- PROMPT_PREFIX=prompt
# Log level for the server
- LOG_LEVEL=DEBUG
# Number of responses to generate for each request
- NUM_RESPONSES=1
# Temperature for the model
- TEMPERATURE=0.7
# Azure resourse endpoint (in case OPENAI_PROVIDER=azure)
- AZURE_RESOURCE_ENDPOINT=
# Azure deployment name (in case OPENAI_PROVIDER=azure)
- AZURE_DEPLOYMENT_NAME=
# Azure API version (in case OPENAI_PROVIDER=azure)
- AZURE_API_VERSION=2023-05-15
# Ollama Endpoint (in case OPENAI_PROVIDER=ollama, OPENAI_MODEL=<your_ollama_model>)
# If running Ollama locally OLLAMA_ENDPOINT=http://host.docker.internal:11434/v1/
- OLLAMA_ENDPOINT=
# specify these parameters if you want to use basic auth for the model server
- BASIC_AUTH_USER=
- BASIC_AUTH_PASS=
ports:
- 9090:9090
volumes:
- "./data/server:/data"