forked from HumanSignal/label-studio-ml-backend
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
340 lines (280 loc) · 12.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import logging
import json
import difflib
import re
import os
import requests
import pytesseract
from PIL import Image, ImageOps
from io import BytesIO
from typing import Union, List, Dict, Optional, Any, Tuple
from tenacity import retry, stop_after_attempt, wait_random
from openai import OpenAI, AzureOpenAI
from label_studio_ml.model import LabelStudioMLBase
from label_studio_ml.response import ModelResponse
from label_studio_sdk.label_interface.objects import PredictionValue
from label_studio_sdk.label_interface.object_tags import ImageTag, ParagraphsTag
from label_studio_sdk.label_interface.control_tags import ControlTag, ObjectTag
logger = logging.getLogger(__name__)
@retry(wait=wait_random(min=5, max=10), stop=stop_after_attempt(6))
def chat_completion_call(messages, params, *args, **kwargs):
"""
Request to OpenAI API (OpenAI, Azure)
Args:
messages: list of messages
params: dict with parameters
Example:
```json
{
"api_key": "YOUR_API_KEY",
"provider": "openai",
"model": "gpt-4",
"num_responses": 1,
"temperature": 0.7
}```
"""
provider = params.get("provider", OpenAIInteractive.OPENAI_PROVIDER)
model = params.get("model", OpenAIInteractive.OPENAI_MODEL)
if provider == "openai":
client = OpenAI(
api_key=params.get("api_key", OpenAIInteractive.OPENAI_KEY),
)
if not model:
model = 'gpt-3.5-turbo'
elif provider == "azure":
client = AzureOpenAI(
api_key=params.get("api_key", OpenAIInteractive.OPENAI_KEY),
api_version=params.get("api_version", OpenAIInteractive.AZURE_API_VERSION),
azure_endpoint=params.get('resource_endpoint', OpenAIInteractive.AZURE_RESOURCE_ENDPOINT).rstrip('/'),
azure_deployment=params.get('deployment_name', OpenAIInteractive.AZURE_DEPLOYMENT_NAME)
)
if not model:
model = 'gpt-35-turbo'
elif provider == "ollama":
client = OpenAI(
base_url=params.get('base_url', OpenAIInteractive.OLLAMA_ENDPOINT),
# required but ignored
api_key='ollama',
)
else:
raise
request_params = {
"messages": messages,
"model": model,
"n": params.get("num_responses", OpenAIInteractive.NUM_RESPONSES),
"temperature": params.get("temperature", OpenAIInteractive.TEMPERATURE)
}
completion = client.chat.completions.create(**request_params)
return completion
def gpt(messages: Union[List[Dict], str], params, *args, **kwargs):
"""
"""
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
logger.debug(f"OpenAI request: {messages}, params={params}")
completion = chat_completion_call(messages, params)
logger.debug(f"OpenAI response: {completion}")
response = [choice.message.content for choice in completion.choices]
return response
class OpenAIInteractive(LabelStudioMLBase):
"""
"""
OPENAI_PROVIDER = os.getenv("OPENAI_PROVIDER", "openai")
OPENAI_KEY = os.getenv('OPENAI_API_KEY')
PROMPT_PREFIX = os.getenv("PROMPT_PREFIX", "prompt")
USE_INTERNAL_PROMPT_TEMPLATE = bool(int(os.getenv("USE_INTERNAL_PROMPT_TEMPLATE", 1)))
# if set, this prompt will be used at the beginning of the session
DEFAULT_PROMPT = os.getenv('DEFAULT_PROMPT')
PROMPT_TEMPLATE = os.getenv("PROMPT_TEMPLATE", '**Source Text**:\n\n"{text}"\n\n**Task Directive**:\n\n"{prompt}"')
PROMPT_TAG = "TextArea"
SUPPORTED_INPUTS = ("Image", "Text", "HyperText", "Paragraphs")
NUM_RESPONSES = int(os.getenv("NUM_RESPONSES", 1))
TEMPERATURE = float(os.getenv("TEMPERATURE", 0.7))
OPENAI_MODEL = os.getenv("OPENAI_MODEL")
AZURE_RESOURCE_ENDPOINT = os.getenv("AZURE_RESOURCE_ENDPOINT", '')
AZURE_DEPLOYMENT_NAME = os.getenv("AZURE_DEPLOYMENT_NAME")
AZURE_API_VERSION = os.getenv("AZURE_API_VERSION", "2023-05-15")
OLLAMA_ENDPOINT = os.getenv("OLLAMA_ENDPOINT")
def setup(self):
if self.DEFAULT_PROMPT and os.path.isfile(self.DEFAULT_PROMPT):
logger.info(f"Reading default prompt from file: {self.DEFAULT_PROMPT}")
with open(self.DEFAULT_PROMPT) as f:
self.DEFAULT_PROMPT = f.read()
def _ocr(self, image_url):
# Open the image containing the text
response = requests.get(image_url)
image = Image.open(BytesIO(response.content))
image = ImageOps.exif_transpose(image)
# Run OCR on the image
text = pytesseract.image_to_string(image)
return text
def _get_text(self, task_data, object_tag):
"""
"""
data = task_data.get(object_tag.value_name)
if data is None:
return None
if isinstance(object_tag, ImageTag):
return self._ocr(data)
elif isinstance(object_tag, ParagraphsTag):
return json.dumps(data)
else:
return data
def _get_prompts(self, context, prompt_tag) -> List[str]:
"""Getting prompt values
"""
if context:
# Interactive mode - get prompt from context
result = context.get('result')
for item in result:
if item.get('from_name') == prompt_tag.name:
return item['value']['text']
# Initializing - get existing prompt from storage
elif prompt := self.get(prompt_tag.name):
return [prompt]
# Default prompt
elif self.DEFAULT_PROMPT:
if self.USE_INTERNAL_PROMPT_TEMPLATE:
logger.error('Using both `DEFAULT_PROMPT` and `USE_INTERNAL_PROMPT_TEMPLATE` is not supported. '
'Please either specify `USE_INTERNAL_PROMPT_TEMPLATE=0` or remove `DEFAULT_PROMPT`. '
'For now, no prompt will be used.')
return []
return [self.DEFAULT_PROMPT]
return []
def _match_choices(self, response: List[str], original_choices: List[str]) -> List[str]:
# assuming classes are separated by newlines
# TODO: support other guardrails
matched_labels = []
predicted_classes = response[0].splitlines()
for pred in predicted_classes:
scores = list(map(lambda l: difflib.SequenceMatcher(None, pred, l).ratio(), original_choices))
matched_labels.append(original_choices[scores.index(max(scores))])
return matched_labels
def _find_choices_tag(self, object_tag):
"""Classification predictor
"""
li = self.label_interface
try:
choices_from_name, _, _ = li.get_first_tag_occurence(
'Choices',
self.SUPPORTED_INPUTS,
to_name_filter=lambda s: s == object_tag.name,
)
return li.get_control(choices_from_name)
except:
return None
def _find_textarea_tag(self, prompt_tag, object_tag):
"""Free-form text predictor
"""
li = self.label_interface
try:
textarea_from_name, _, _ = li.get_first_tag_occurence(
'TextArea',
self.SUPPORTED_INPUTS,
name_filter=lambda s: s != prompt_tag.name,
to_name_filter=lambda s: s == object_tag.name,
)
return li.get_control(textarea_from_name)
except:
return None
def _find_prompt_tags(self) -> Tuple[ControlTag, ObjectTag]:
"""Find prompting tags in the config
"""
li = self.label_interface
prompt_from_name, prompt_to_name, value = li.get_first_tag_occurence(
# prompt tag
self.PROMPT_TAG,
# supported input types
self.SUPPORTED_INPUTS,
# if multiple <TextArea> are presented, use one with prefix specified in PROMPT_PREFIX
name_filter=lambda s: s.startswith(self.PROMPT_PREFIX))
return li.get_control(prompt_from_name), li.get_object(prompt_to_name)
def _validate_tags(self, choices_tag: str, textarea_tag: str) -> None:
if not choices_tag and not textarea_tag:
raise ValueError('No supported tags found: <Choices> or <TextArea>')
def _generate_normalized_prompt(self, text: str, prompt: str, task_data: Dict, labels: Optional[List[str]]) -> str:
"""
"""
if self.USE_INTERNAL_PROMPT_TEMPLATE:
norm_prompt = self.PROMPT_TEMPLATE.format(text=text, prompt=prompt, labels=labels)
else:
norm_prompt = prompt.format(labels=labels, **task_data)
return norm_prompt
def _generate_response_regions(self, response: List[str], prompt_tag,
choices_tag: ControlTag, textarea_tag: ControlTag, prompts: List[str]) -> List:
"""
"""
regions = []
if choices_tag and len(response) > 0:
matched_labels = self._match_choices(response, choices_tag.labels)
regions.append(choices_tag.label(matched_labels))
if textarea_tag:
regions.append(textarea_tag.label(text=response))
# not sure why we need this but it was in the original code
regions.append(prompt_tag.label(text=prompts))
return regions
def _predict_single_task(self, task_data: Dict, prompt_tag: Any, object_tag: Any, prompt: str,
choices_tag: ControlTag, textarea_tag: ControlTag, prompts: List[str]) -> Dict:
"""
"""
text = self._get_text(task_data, object_tag)
# Add {labels} to the prompt if choices tag is present
labels = choices_tag.labels if choices_tag else None
norm_prompt = self._generate_normalized_prompt(text, prompt, task_data, labels=labels)
# run inference
# this are params provided through the web interface
response = gpt(norm_prompt, self.extra_params)
regions = self._generate_response_regions(response, prompt_tag, choices_tag, textarea_tag, prompts)
return PredictionValue(result=regions, score=0.1, model_version=str(self.model_version))
def predict(self, tasks: List[Dict], context: Optional[Dict] = None, **kwargs) -> ModelResponse:
"""
"""
predictions = []
# prompt tag contains the prompt in the config
# object tag contains what we plan to label
prompt_tag, object_tag = self._find_prompt_tags()
prompts = self._get_prompts(context, prompt_tag)
if prompts:
prompt = "\n".join(prompts)
choices_tag = self._find_choices_tag(object_tag)
textarea_tag = self._find_textarea_tag(prompt_tag, object_tag)
self._validate_tags(choices_tag, textarea_tag)
for task in tasks:
# preload all task data fields, they are needed for prompt
task_data = self.preload_task_data(task, task['data'])
pred = self._predict_single_task(task_data, prompt_tag, object_tag, prompt,
choices_tag, textarea_tag, prompts)
predictions.append(pred)
return ModelResponse(predictions=predictions)
def _prompt_diff(self, old_prompt, new_prompt):
"""
"""
old_lines = old_prompt.splitlines()
new_lines = new_prompt.splitlines()
diff = difflib.unified_diff(old_lines, new_lines, lineterm="")
return "\n".join(
line for line in diff if line.startswith(('+',)) and not line.startswith(('+++', '---')))
def fit(self, event, data, **additional_params):
"""
"""
logger.debug(f'Data received: {data}')
if event not in ('ANNOTATION_CREATED', 'ANNOTATION_UPDATED'):
return
prompt_tag, object_tag = self._find_prompt_tags()
prompts = self._get_prompts(data['annotation'], prompt_tag)
if not prompts:
logger.debug(f'No prompts recorded.')
return
prompt = '\n'.join(prompts)
current_prompt = self.get(prompt_tag.name)
# find substrings that differ between current and new prompt
# if there are no differences, skip training
if current_prompt:
diff = self._prompt_diff(current_prompt, prompt)
if not diff:
logger.debug('No prompt diff found.')
return
logger.debug(f'Prompt diff: {diff}')
self.set(prompt_tag.name, prompt)
model_version = self.bump_model_version()
logger.debug(f'Updated model version to {str(model_version)}')