forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_higgs.py
295 lines (245 loc) · 11.3 KB
/
train_higgs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""A script that builds boosted trees over higgs data.
If you haven't, please run data_download.py beforehand to prepare the data.
For some more details on this example, please refer to README.md as well.
Note that the model_dir is cleaned up before starting the training.
Usage:
$ python train_higgs.py --n_trees=100 --max_depth=6 --learning_rate=0.1 \
--model_dir=/tmp/higgs_model
Note that BoostedTreesClassifier is available since Tensorflow 1.8.0.
So you need to install recent enough version of Tensorflow to use this example.
The training data is by default the first million examples out of 11M examples,
and eval data is by default the last million examples.
They are controlled by --train_start, --train_count, --eval_start, --eval_count.
e.g. to train over the first 10 million examples instead of 1 million:
$ python train_higgs.py --n_trees=100 --max_depth=6 --learning_rate=0.1 \
--model_dir=/tmp/higgs_model --train_count=10000000
Training history and metrics can be inspected using tensorboard.
Set --logdir as the --model_dir set by flag when training
(or the default /tmp/higgs_model).
$ tensorboard --logdir=/tmp/higgs_model
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
# pylint: disable=g-bad-import-order
import numpy as np
from absl import app as absl_app
from absl import flags
import tensorflow as tf
# pylint: enable=g-bad-import-order
from official.utils.flags import core as flags_core
from official.utils.flags._conventions import help_wrap
from official.utils.logs import logger
NPZ_FILE = "HIGGS.csv.gz.npz" # numpy compressed file containing "data" array
def read_higgs_data(data_dir, train_start, train_count, eval_start, eval_count):
"""Reads higgs data from csv and returns train and eval data.
Args:
data_dir: A string, the directory of higgs dataset.
train_start: An integer, the start index of train examples within the data.
train_count: An integer, the number of train examples within the data.
eval_start: An integer, the start index of eval examples within the data.
eval_count: An integer, the number of eval examples within the data.
Returns:
Numpy array of train data and eval data.
"""
npz_filename = os.path.join(data_dir, NPZ_FILE)
try:
# gfile allows numpy to read data from network data sources as well.
with tf.gfile.Open(npz_filename, "rb") as npz_file:
with np.load(npz_file) as npz:
data = npz["data"]
except tf.errors.NotFoundError as e:
raise RuntimeError(
"Error loading data; use data_download.py to prepare the data.\n{}: {}"
.format(type(e).__name__, e))
return (data[train_start:train_start+train_count],
data[eval_start:eval_start+eval_count])
# This showcases how to make input_fn when the input data is available in the
# form of numpy arrays.
def make_inputs_from_np_arrays(features_np, label_np):
"""Makes and returns input_fn and feature_columns from numpy arrays.
The generated input_fn will return tf.data.Dataset of feature dictionary and a
label, and feature_columns will consist of the list of
tf.feature_column.BucketizedColumn.
Note, for in-memory training, tf.data.Dataset should contain the whole data
as a single tensor. Don't use batch.
Args:
features_np: A numpy ndarray (shape=[batch_size, num_features]) for
float32 features.
label_np: A numpy ndarray (shape=[batch_size, 1]) for labels.
Returns:
input_fn: A function returning a Dataset of feature dict and label.
feature_names: A list of feature names.
feature_column: A list of tf.feature_column.BucketizedColumn.
"""
num_features = features_np.shape[1]
features_np_list = np.split(features_np, num_features, axis=1)
# 1-based feature names.
feature_names = ["feature_%02d" % (i + 1) for i in range(num_features)]
# Create source feature_columns and bucketized_columns.
def get_bucket_boundaries(feature):
"""Returns bucket boundaries for feature by percentiles."""
return np.unique(np.percentile(feature, range(0, 100))).tolist()
source_columns = [
tf.feature_column.numeric_column(
feature_name, dtype=tf.float32,
# Although higgs data have no missing values, in general, default
# could be set as 0 or some reasonable value for missing values.
default_value=0.0)
for feature_name in feature_names
]
bucketized_columns = [
tf.feature_column.bucketized_column(
source_columns[i],
boundaries=get_bucket_boundaries(features_np_list[i]))
for i in range(num_features)
]
# Make an input_fn that extracts source features.
def input_fn():
"""Returns features as a dictionary of numpy arrays, and a label."""
features = {
feature_name: tf.constant(features_np_list[i])
for i, feature_name in enumerate(feature_names)
}
return tf.data.Dataset.zip((tf.data.Dataset.from_tensors(features),
tf.data.Dataset.from_tensors(label_np),))
return input_fn, feature_names, bucketized_columns
def make_eval_inputs_from_np_arrays(features_np, label_np):
"""Makes eval input as streaming batches."""
num_features = features_np.shape[1]
features_np_list = np.split(features_np, num_features, axis=1)
# 1-based feature names.
feature_names = ["feature_%02d" % (i + 1) for i in range(num_features)]
def input_fn():
features = {
feature_name: tf.constant(features_np_list[i])
for i, feature_name in enumerate(feature_names)
}
return tf.data.Dataset.zip((
tf.data.Dataset.from_tensor_slices(features),
tf.data.Dataset.from_tensor_slices(label_np),)).batch(1000)
return input_fn
def _make_csv_serving_input_receiver_fn(column_names, column_defaults):
"""Returns serving_input_receiver_fn for csv.
The input arguments are relevant to `tf.decode_csv()`.
Args:
column_names: a list of column names in the order within input csv.
column_defaults: a list of default values with the same size of
column_names. Each entity must be either a list of one scalar, or an
empty list to denote the corresponding column is required.
e.g. [[""], [2.5], []] indicates the third column is required while
the first column must be string and the second must be float/double.
Returns:
a serving_input_receiver_fn that handles csv for serving.
"""
def serving_input_receiver_fn():
csv = tf.placeholder(dtype=tf.string, shape=[None], name="csv")
features = dict(zip(column_names, tf.decode_csv(csv, column_defaults)))
receiver_tensors = {"inputs": csv}
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
return serving_input_receiver_fn
def train_boosted_trees(flags_obj):
"""Train boosted_trees estimator on HIGGS data.
Args:
flags_obj: An object containing parsed flag values.
"""
# Clean up the model directory if present.
if tf.gfile.Exists(flags_obj.model_dir):
tf.gfile.DeleteRecursively(flags_obj.model_dir)
tf.logging.info("## Data loading...")
train_data, eval_data = read_higgs_data(
flags_obj.data_dir, flags_obj.train_start, flags_obj.train_count,
flags_obj.eval_start, flags_obj.eval_count)
tf.logging.info("## Data loaded; train: {}{}, eval: {}{}".format(
train_data.dtype, train_data.shape, eval_data.dtype, eval_data.shape))
# Data consists of one label column followed by 28 feature columns.
train_input_fn, feature_names, feature_columns = make_inputs_from_np_arrays(
features_np=train_data[:, 1:], label_np=train_data[:, 0:1])
eval_input_fn = make_eval_inputs_from_np_arrays(
features_np=eval_data[:, 1:], label_np=eval_data[:, 0:1])
tf.logging.info("## Features prepared. Training starts...")
# Create benchmark logger to log info about the training and metric values
run_params = {
"train_start": flags_obj.train_start,
"train_count": flags_obj.train_count,
"eval_start": flags_obj.eval_start,
"eval_count": flags_obj.eval_count,
"n_trees": flags_obj.n_trees,
"max_depth": flags_obj.max_depth,
}
benchmark_logger = logger.config_benchmark_logger(flags_obj)
benchmark_logger.log_run_info(
model_name="boosted_trees",
dataset_name="higgs",
run_params=run_params,
test_id=flags_obj.benchmark_test_id)
# Though BoostedTreesClassifier is under tf.estimator, faster in-memory
# training is yet provided as a contrib library.
classifier = tf.contrib.estimator.boosted_trees_classifier_train_in_memory(
train_input_fn,
feature_columns,
model_dir=flags_obj.model_dir or None,
n_trees=flags_obj.n_trees,
max_depth=flags_obj.max_depth,
learning_rate=flags_obj.learning_rate)
# Evaluation.
eval_results = classifier.evaluate(eval_input_fn)
# Benchmark the evaluation results
benchmark_logger.log_evaluation_result(eval_results)
# Exporting the savedmodel with csv parsing.
if flags_obj.export_dir is not None:
classifier.export_savedmodel(
flags_obj.export_dir,
_make_csv_serving_input_receiver_fn(
column_names=feature_names,
# columns are all floats.
column_defaults=[[0.0]] * len(feature_names)))
def main(_):
train_boosted_trees(flags.FLAGS)
def define_train_higgs_flags():
"""Add tree related flags as well as training/eval configuration."""
flags_core.define_base(clean=False, stop_threshold=False, batch_size=False,
num_gpu=False)
flags_core.define_benchmark()
flags.adopt_module_key_flags(flags_core)
flags.DEFINE_integer(
name="train_start", default=0,
help=help_wrap("Start index of train examples within the data."))
flags.DEFINE_integer(
name="train_count", default=1000000,
help=help_wrap("Number of train examples within the data."))
flags.DEFINE_integer(
name="eval_start", default=10000000,
help=help_wrap("Start index of eval examples within the data."))
flags.DEFINE_integer(
name="eval_count", default=1000000,
help=help_wrap("Number of eval examples within the data."))
flags.DEFINE_integer(
"n_trees", default=100, help=help_wrap("Number of trees to build."))
flags.DEFINE_integer(
"max_depth", default=6, help=help_wrap("Maximum depths of each tree."))
flags.DEFINE_float(
"learning_rate", default=0.1,
help=help_wrap("The learning rate."))
flags_core.set_defaults(data_dir="/tmp/higgs_data",
model_dir="/tmp/higgs_model")
if __name__ == "__main__":
# Training progress and eval results are shown as logging.INFO; so enables it.
tf.logging.set_verbosity(tf.logging.INFO)
define_train_higgs_flags()
absl_app.run(main)