-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvector.h
586 lines (576 loc) · 20.4 KB
/
vector.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
#pragma once
#include <iostream>
#include <complex>
#include <cmath>
#include <vector>
#include <algorithm>
/*
* This file is part of the Vector3D distribution (https://github.com/cdelv/Vector3D).
* Copyright (c) 2022 Carlos Andres del Valle.
*
* Vector3D is under the terms of the BSD-3 license. We welcome feedback and contributions.
*
* you should have received a copy of the BSD3 Public License
* along with this program. If not, see <https://github.com/cdelv/Vector3D> LICENSE.
*
*
* This library requires C++20.
*/
// Type traits for the vector class
// They ensure that the type of the vector elements supports the necessary operations.
// You can modify the concept if you need a different type
// C++ will add is_complex, but not jet. Therefore, I implement it.
template <typename T>
struct is_complex : std::false_type {};
template <typename T>
struct is_complex<std::complex<T>> : std::is_arithmetic<T> {};
template <typename T>
static constexpr bool is_complex_v = is_complex<T>::value;
template <typename T>
concept __Number = std::is_arithmetic_v<T> || is_complex_v<T>;
/*
* Expression template to avoid unnecessary allocations in chained operations
*/
template <typename E, std::size_t N>
class __VecExpression {
public:
inline constexpr const auto operator[](const std::size_t i) const {
return static_cast<E const&>(*this)[i];
}
static inline constexpr const std::size_t size() {
return N;
}
};
// std::cout << operator
template <typename E, std::size_t N>
std::ostream& operator<<(std::ostream& os, const __VecExpression<E, N>& vec) {
os << "(";
for (std::size_t i = 0; i < N; ++i) {
os << vec[i];
if (i < N - 1) {
os << ", ";
}
}
os << ")";
return os;
}
/*
* Utility functions
*/
// Sumation of all elements
template <typename E1, std::size_t N>
inline constexpr auto sum(const __VecExpression<E1, N> &expr) noexcept {
auto Sum = expr[0];
for (std::size_t i = 1; i < N; ++i)
Sum += expr[i];
return Sum;
}
// Specialization for N = 3
template <typename E1>
inline constexpr auto sum(const __VecExpression<E1, 3> &expr) noexcept {
return expr[0] + expr[1] + expr[2];
}
// Specialization for N = 2
template <typename E1>
inline constexpr auto sum(const __VecExpression<E1, 2> &expr) noexcept {
return expr[0] + expr[1];
}
// Element-wise product
template <typename E1, typename E2, std::size_t N>
class __VecElementWiseProduct : public __VecExpression<__VecElementWiseProduct<E1, E2, N>, N> {
const E1& _u;
const E2& _v;
public:
constexpr __VecElementWiseProduct(const E1 &u, const E2 &v) noexcept : _u(u), _v(v) {};
inline constexpr const auto operator[](const std::size_t i) const {
return _u[i] * _v[i];
}
static inline constexpr const std::size_t size() {
return N;
}
};
template <typename E1, typename E2, std::size_t N>
inline constexpr __VecElementWiseProduct<E1, E2, N> ElemProd(__VecExpression<E1, N> const& u, __VecExpression<E2, N> const& v) noexcept {
return __VecElementWiseProduct<E1, E2, N>(*static_cast<const E1*>(&u), *static_cast<const E2*>(&v));
}
// Dot Product
template <typename E1, typename E2, std::size_t N>
inline constexpr auto dot(const __VecExpression<E1, N> &u, const __VecExpression<E2, N> &v) noexcept {
return sum(ElemProd(u, v));
}
// Cross Product
template <typename E1, typename E2>
class __VecCrossProduct : public __VecExpression<__VecCrossProduct<E1, E2>, 3> {
const E1& _u;
const E2& _v;
public:
constexpr __VecCrossProduct(const E1 &u, const E2 &v) noexcept : _u(u), _v(v) {};
inline constexpr const auto operator[](const std::size_t i) const {
if (i == 0) return _u[1] * _v[2] - _u[2] * _v[1];
if (i == 1) return _u[2] * _v[0] - _u[0] * _v[2];
if (i == 2) return _u[0] * _v[1] - _u[1] * _v[0];
return 0 * _u[0];
}
static inline constexpr const std::size_t size() {
return 3;
}
};
template <typename E1, typename E2>
inline constexpr __VecCrossProduct<E1, E2> cross(const __VecExpression<E1, 3> & u, const __VecExpression<E2, 3> &v) noexcept {
return __VecCrossProduct<E1, E2>(*static_cast<const E1*>(&u), *static_cast<const E2*>(&v));
}
template <typename E1, typename E2>
inline constexpr auto cross(const __VecExpression<E1, 2> & u, const __VecExpression<E2, 2> &v) noexcept {
return u[0] * v[1] - u[1] * v[0];
}
// Square Norm
template <typename E1, std::size_t N>
inline constexpr auto norm2(const __VecExpression<E1, N> &expr) noexcept {
return dot(expr, expr);
}
// Norm
template <typename E1, std::size_t N>
inline constexpr auto norm(const __VecExpression<E1, N> &expr) noexcept {
return std::sqrt(norm2(expr));
}
// Angle between 2 vectors
template <typename E1, typename E2, std::size_t N>
inline constexpr auto angle(const __VecExpression<E1, N> &u, const __VecExpression<E2, N> &v) noexcept {
return std::acos(dot(u, v) / (norm(u) * norm(v)));
}
template <typename T>
inline constexpr T __radians_to_degrees(T degrees) {
return degrees * static_cast<T>(180.0) * static_cast<T>(M_1_PI);
}
template <typename E1, typename E2, std::size_t N>
inline constexpr auto angled(const __VecExpression<E1, N> &u, const __VecExpression<E2, N> &v) noexcept {
return __radians_to_degrees(std::acos(dot(u, v) / (norm(u) * norm(v))));
}
/*
* OPERATORS
*/
// Sum
template <typename E1, typename E2, std::size_t N>
class __VecSum : public __VecExpression<__VecSum<E1, E2, N>, N> {
const E1& _u;
const E2& _v;
public:
constexpr __VecSum(const E1 &u, const E2 &v) noexcept : _u(u), _v(v) {};
inline constexpr const auto operator[](const std::size_t i) const {
return _u[i] + _v[i];
}
static inline constexpr const std::size_t size() {
return N;
}
};
template <typename E1, typename E2, std::size_t N>
inline constexpr __VecSum<E1, E2, N> operator+(const __VecExpression<E1, N> & u, const __VecExpression<E2, N> &v) noexcept {
return __VecSum<E1, E2, N>(*static_cast<const E1*>(&u), *static_cast<const E2*>(&v));
}
// +v operator
// Left Sum
template <typename E1, std::size_t N>
class __LeftVecSum : public __VecExpression<__LeftVecSum<E1, N>, N> {
const E1& _u;
public:
constexpr __LeftVecSum(const E1 &u) noexcept : _u(u) {};
inline constexpr const auto operator[](const std::size_t i) const {
return _u[i];
}
static inline constexpr const std::size_t size() {
return N;
}
};
template <typename E1, std::size_t N>
inline constexpr __LeftVecSum<E1, N> operator+(const __VecExpression<E1, N> & u) noexcept {
return __LeftVecSum<E1, N>(*static_cast<const E1*>(&u));
}
// Subtraction
template <typename E1, typename E2, std::size_t N>
class __VecSubtraction : public __VecExpression<__VecSubtraction<E1, E2, N>, N> {
const E1& _u;
const E2& _v;
public:
constexpr __VecSubtraction(const E1 &u, const E2 &v) noexcept : _u(u), _v(v) {};
inline constexpr const auto operator[](const std::size_t i) const {
return _u[i] - _v[i];
}
static inline constexpr const std::size_t size() {
return N;
}
};
template <typename E1, typename E2, std::size_t N>
inline constexpr __VecSubtraction<E1, E2, N> operator-(__VecExpression<E1, N> const& u, __VecExpression<E2, N> const& v) noexcept {
return __VecSubtraction<E1, E2, N>(*static_cast<const E1*>(&u), *static_cast<const E2*>(&v));
}
// -v operator
// Left Subtraction
template <typename E1, std::size_t N>
class __LeftVecSubtraction : public __VecExpression<__LeftVecSubtraction<E1, N>, N> {
const E1& _u;
public:
constexpr __LeftVecSubtraction(const E1 &u) noexcept : _u(u) {};
inline constexpr const auto operator[](const std::size_t i) const {
return -_u[i];
}
static inline constexpr const std::size_t size() {
return N;
}
};
template <typename E1, std::size_t N>
inline constexpr __LeftVecSubtraction<E1, N> operator-(const __VecExpression<E1, N> & u) noexcept {
return __LeftVecSubtraction<E1, N>(*static_cast<const E1*>(&u));
}
// Dot product
template <typename E1, typename E2, std::size_t N>
inline constexpr auto operator*(const __VecExpression<E1, N> &u, const __VecExpression<E2, N> &v) noexcept {
return dot(u, v);
}
// Cross product
template <typename E1, typename E2, std::size_t N>
inline constexpr auto operator^(const __VecExpression<E1, N> &u, const __VecExpression<E2, N> &v) noexcept {
return cross(u, v);
}
// Scalar multiplication
template <typename E1, __Number E2, std::size_t N>
class __LeftVecScalarProduct : public __VecExpression<__LeftVecScalarProduct<E1, E2, N>, N> {
const E1& _u;
const E2& _v;
public:
constexpr __LeftVecScalarProduct(const E1 &u, const E2 &v) noexcept : _u(u), _v(v) {};
inline constexpr const auto operator[](const std::size_t i) const {
return _u[i] * _v;
}
static inline constexpr const std::size_t size() {
return N;
}
};
template <typename E1, __Number E2, std::size_t N>
inline constexpr __LeftVecScalarProduct<E1, E2, N> operator*(const E2 &v, const __VecExpression<E1, N> &u) noexcept {
return __LeftVecScalarProduct<E1, E2, N>(*static_cast<const E1*>(&u), *static_cast<const E2*>(&v));
}
template <typename E1, __Number E2, std::size_t N>
class __RightVecScalarProduct : public __VecExpression<__RightVecScalarProduct<E1, E2, N>, N> {
const E1& _u;
const E2& _v;
public:
constexpr __RightVecScalarProduct(const E1 &u, const E2 &v) noexcept : _u(u), _v(v) {};
inline constexpr const auto operator[](const std::size_t i) const {
return _u[i] * _v;
}
static inline constexpr const std::size_t size() {
return N;
}
};
template <typename E1, __Number E2, std::size_t N>
inline constexpr __RightVecScalarProduct<E1, E2, N> operator*(const __VecExpression<E1, N> &u, const E2 &v) noexcept {
return __RightVecScalarProduct<E1, E2, N>(*static_cast<const E1*>(&u), *static_cast<const E2*>(&v));
}
// Element-wise division
template <typename E1, typename E2, std::size_t N>
class __VecElementWiseDivision : public __VecExpression<__VecElementWiseDivision<E1, E2, N>, N> {
const E1& _u;
const E2& _v;
public:
constexpr __VecElementWiseDivision(const E1 &u, const E2 &v) noexcept : _u(u), _v(v) {};
inline constexpr const auto operator[](const std::size_t i) const {
return _u[i] / _v[i];
}
static inline constexpr const std::size_t size() {
return N;
}
};
template <typename E1, typename E2, std::size_t N>
inline constexpr __VecElementWiseDivision<E1, E2, N> operator/(__VecExpression<E1, N> const& u, __VecExpression<E2, N> const& v) noexcept {
return __VecElementWiseDivision<E1, E2, N>(*static_cast<const E1*>(&u), *static_cast<const E2*>(&v));
}
// Scalar Division
template <typename E1, __Number E2, std::size_t N>
class __VecScalarDivision : public __VecExpression<__VecScalarDivision<E1, E2, N>, N> {
const E1& _u;
const E2& _v;
public:
constexpr __VecScalarDivision(const E1 &u, const E2 &v) noexcept : _u(u), _v(v) {};
inline constexpr const auto operator[](const std::size_t i) const {
return _u[i] / _v;
}
static inline constexpr const std::size_t size() {
return N;
}
};
template <typename E1, __Number E2, std::size_t N>
inline constexpr __VecScalarDivision<E1, E2, N> operator/(const __VecExpression<E1, N> &u, const E2 &v) noexcept {
return __VecScalarDivision<E1, E2, N>(*static_cast<const E1*>(&u), *static_cast<const E2*>(&v));
}
// Normalization
template <typename E1, typename E2, std::size_t N>
class __VecNormalization : public __VecExpression<__VecNormalization<E1, E2, N>, N> {
const E1& _u;
const E2 Norm;
public:
constexpr __VecNormalization(const E1 &u) noexcept : _u(u), Norm(norm(u)) {};
inline constexpr const auto operator[](const std::size_t i) const {
return _u[i] / Norm;
}
static inline constexpr const std::size_t size() {
return N;
}
};
template <typename E1, std::size_t N>
inline constexpr auto unit(const __VecExpression<E1, N> &u) noexcept {
return __VecNormalization<E1, decltype(norm(u)), N>(*static_cast<const E1*>(&u));
}
/*
* Vector Classes
*/
template <__Number T>
class vector3D : public __VecExpression<vector3D<T>, 3> {
public:
T x, y, z;
static inline constexpr const std::size_t size() {
return 3;
}
constexpr vector3D() noexcept = default;
constexpr vector3D(const vector3D& other) noexcept = default;
constexpr vector3D(vector3D&& other) noexcept = default;
constexpr vector3D(const T value) noexcept : x(value), y(value), z(value) {};
constexpr vector3D(const T x_val, const T y_val, const T z_val) noexcept : x(x_val), y(y_val), z(z_val) {}
constexpr vector3D& operator=(const vector3D& other) noexcept = default;
constexpr vector3D& operator=(vector3D&& other) noexcept = default;
inline constexpr void load(const T x_val, const T y_val, const T z_val) noexcept {
x = x_val; y = y_val; z = z_val;
}
template <typename E>
inline constexpr vector3D(const __VecExpression<E, 3> &expr) noexcept {
x = expr[0]; y = expr[1]; z = expr[2];
}
inline constexpr const T& operator[](const std::size_t i) const {
if (i == 0) return x;
else if (i == 1) return y;
else if (i == 2) return z;
else throw std::out_of_range("vector3D: Index out of range");
}
inline constexpr T& operator[](const std::size_t i) {
if (i == 0) return x;
else if (i == 1) return y;
else if (i == 2) return z;
else throw std::out_of_range("vector3D: Index out of range");
}
/*
* OPERATORS
*/
template <typename E>
inline constexpr vector3D<T>& operator+=(const __VecExpression<E, 3>& expr) noexcept {
x += expr[0];
y += expr[1];
z += expr[2];
return *this;
}
template <typename E>
inline constexpr vector3D<T>& operator-=(const __VecExpression<E, 3>& expr) noexcept {
x -= expr[0];
y -= expr[1];
z -= expr[2];
return *this;
}
template <__Number E>
inline constexpr vector3D<T>& operator*=(const E& a) noexcept {
x *= a;
y *= a;
z *= a;
return *this;
}
template <__Number E>
inline constexpr vector3D<T>& operator/=(const E& a) noexcept {
x /= a;
y /= a;
z /= a;
return *this;
}
template <typename E>
inline constexpr vector3D<T>& operator/=(const __VecExpression<E, 3>& expr) noexcept {
x /= expr[0];
y /= expr[1];
z /= expr[2];
return *this;
}
template <typename E>
inline constexpr vector3D<T>& operator^=(const __VecExpression<E, 3>& expr) noexcept {
T xtemp = y * expr[2] - z * expr[1];
T ytemp = z * expr[0] - x * expr[2];
T ztemp = x * expr[1] - y * expr[0];
x = xtemp;
y = ytemp;
z = ztemp;
return *this;
}
inline constexpr const T norm2() const noexcept {
return dot(*this, *this);
}
inline constexpr const T norm() const noexcept {
return std::sqrt(norm2());
}
inline constexpr const vector3D<T>& unit() noexcept {
*this /= norm();
return *this;
}
};
template <__Number T>
class vector2D : public __VecExpression<vector2D<T>, 2> {
public:
T x, y;
static inline constexpr const std::size_t size() {
return 2;
}
constexpr vector2D() noexcept = default;
constexpr vector2D(const vector2D& other) noexcept = default;
constexpr vector2D(vector2D&& other) noexcept = default;
constexpr vector2D(const T value) noexcept : x(value), y(value) {};
constexpr vector2D(const T x_val, const T y_val) noexcept : x(x_val), y(y_val) {}
constexpr vector2D& operator=(const vector2D& other) noexcept = default;
constexpr vector2D& operator=(vector2D&& other) noexcept = default;
inline constexpr void load(const T x_val, const T y_val) noexcept {
x = x_val; y = y_val;
}
template <typename E>
inline constexpr vector2D(const __VecExpression<E, 2> &expr) noexcept {
x = expr[0]; y = expr[1];
}
inline constexpr const T& operator[](const std::size_t i) const {
switch (i) {
case 0: return x;
case 1: return y;
default: throw std::out_of_range("vector2D: Index out of range");
}
}
inline constexpr T& operator[](const std::size_t i) {
switch (i) {
case 0: return x;
case 1: return y;
default: throw std::out_of_range("vector2D: Index out of range");
}
}
/*
* OPERATORS
*/
template <typename E>
inline constexpr vector2D<T>& operator+=(const __VecExpression<E, 2>& expr) noexcept {
x += expr[0];
y += expr[1];
return *this;
}
template <typename E>
inline constexpr vector2D<T>& operator-=(const __VecExpression<E, 2>& expr) noexcept {
x -= expr[0];
y -= expr[1];
return *this;
}
template <__Number E>
inline constexpr vector2D<T>& operator*=(const E& a) noexcept {
x *= a;
y *= a;
return *this;
}
template <__Number E>
inline constexpr vector2D<T>& operator/=(const E& a) noexcept {
x /= a;
y /= a;
return *this;
}
template <typename E>
inline constexpr vector2D<T>& operator/=(const __VecExpression<E, 2>& expr) noexcept {
x /= expr[0];
y /= expr[1];
return *this;
}
inline constexpr const T norm2() const noexcept {
return dot(*this, *this);
}
inline constexpr const T norm() const noexcept {
return std::sqrt(norm2());
}
inline constexpr const vector2D<T>& unit() noexcept {
*this /= norm();
return *this;
}
};
template <__Number T, std::size_t N>
class vectorND : public __VecExpression<vectorND<T, N>, N> {
private:
std::vector<T> data;
public:
static inline constexpr const std::size_t size() {
return N;
}
std::vector<T>::iterator begin() { return data.begin();}
std::vector<T>::iterator end() { return data.end();}
constexpr vectorND() noexcept = default;
constexpr vectorND(const vectorND& other) noexcept = default;
constexpr vectorND(vectorND&& other) noexcept = default;
constexpr vectorND(const T value) noexcept : data(N, value) {}
template <typename... Args>
constexpr vectorND(const Args&... args) noexcept : data {args...} {
static_assert(sizeof...(args) == N, "vectorND: Number of arguments does not match the size of the vector.");
}
constexpr vectorND& operator=(const vectorND& other) noexcept = default;
constexpr vectorND& operator=(vectorND&& other) noexcept = default;
template <typename... Args>
inline constexpr void load(const Args&... args) noexcept {
static_assert(sizeof...(args) == N, "vectorND: Number of arguments does not match the size of the vector.");
data = {args...};
}
template <typename E>
inline constexpr vectorND(const __VecExpression<E, N> &expr) noexcept {
for (std::size_t i = 0; i < N; ++i)
data[i] = expr[i];
}
inline constexpr const T& operator[](const std::size_t i) const {
return data[i];
}
inline constexpr T& operator[](const std::size_t i) {
return data[i];
}
/*
* OPERATORS
*/
template <typename E>
inline constexpr vectorND<T, N>& operator+=(const __VecExpression<E, N>& expr) noexcept {
for (std::size_t i = 0; i < N; ++i)
data[i] += expr[i];
return *this;
}
template <typename E>
inline constexpr vectorND<T, N>& operator-=(const __VecExpression<E, N>& expr) noexcept {
for (std::size_t i = 0; i < N; ++i)
data[i] -= expr[i];
return *this;
}
template <__Number E>
inline constexpr vectorND<T, N>& operator*=(const E& a) noexcept {
for (std::size_t i = 0; i < N; ++i)
data[i] *= a;
return *this;
}
template <__Number E>
inline constexpr vectorND<T, N>& operator/=(const E& a) noexcept {
for (std::size_t i = 0; i < N; ++i)
data[i] /= a;
return *this;
}
template <typename E>
inline constexpr vectorND<T, N>& operator/=(const __VecExpression<E, N>& expr) noexcept {
for (std::size_t i = 0; i < N; ++i)
data[i] /= expr[i];
return *this;
}
inline constexpr const T norm2() const noexcept {
return dot(*this, *this);
}
inline constexpr const T norm() const noexcept {
return std::sqrt(norm2());
}
inline constexpr const vectorND<T, N>& unit() noexcept {
*this /= norm();
return *this;
}
};