-
Notifications
You must be signed in to change notification settings - Fork 0
/
GADM.py
executable file
·480 lines (411 loc) · 18.4 KB
/
GADM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
'''
GADM, AGADM
An adaptive genetic algorithm with diversity-guided
mutation and its global convergence property
'''
from os import system
import sys
import random
import numpy
import math
#%% a=10
def handle_inputs(input_array):
pop_size = int(input_array[0])
tournament_size = int(input_array[1])
mutation_rate = float(input_array[2])
iter_number = int(input_array[3])
bag_size = int(input_array[4])
item_weights = list(map(int,input_array[5].split(',')))
item_values = list(map(int,input_array[6].split(',')))
return {'pop_size':pop_size,
'tournament_size': tournament_size,
'mutation_rate': mutation_rate,
'iter_number': iter_number,
'bag_size': bag_size,
'item_values': item_values,
'item_weights': item_weights,
}
def get_inputs(inpts):
file_name = "testcases/test1.txt"
for i in inpts:
if '.txt' in i:
file_name = i
break
if file_name:
f = open(file_name)
lines = []
for line in f:
lines.append(line.rstrip('\n'))
return lines, file_name
def get_params():
input_array, file_name = get_inputs(sys.argv)
paramaters = handle_inputs(input_array)
return paramaters, file_name
class IndividualGene:
'''
Individual Gene representation which includes chromosome and fitness value
'''
def __init__(self, chromosome, fitness_val):
'''
This is the basic initialization function.
:param chromosome: chromosome of this individual gene.
:param fitness_val: fitness value of this chromosome
'''
# initialize private members with input values
self.chromosome = chromosome
self.fitness_val = fitness_val
class DiversityMutationGA:
'''
Base class for genetic algorithm. this class will provide basic functions to generate populations, do selection,
crossover, mutation and etc.
'''
def __init__(self, fitness_func=None, fitness_func_context=None, select_type="rank", mut_prob=0.05, mut_bits=1,
cross_prob=0.95, cross_points=1, elitism=True, tournament_size=None):
'''
This is the basic initialization function.
:param fitness_func: function to compute fitness value for one chromosome
:param fitness_func_context: context of fitness function
:param select_type: parent selection type. could be one of three following values: "rank"(rank wheel selection);
"roulette"(roulette wheel selection);"tournament". Default is "rank"
:param mut_prob: mutation probability. default is 0.05
:param mut_bits: bit number of mutation. default is 1.
:param cross_prob: crossover probability. default is 0.95
:param cross_points: cross over points. default is 1.
:param elitism: enable elitism or not
:param tournament_size: size of tournament in case the selection type is "tournament". default is none.
'''
# initialize private members with input values
self.fitness_func = fitness_func
self.fitness_func_context = fitness_func_context
self.select_type = select_type
self.mut_prob = mut_prob
self.mut_bits = mut_bits
self.cross_prob = cross_prob
self.cross_points = cross_points
self.elitism = elitism
self.tournament_size = tournament_size
self.population = None
self.best_chromosome = None
self.best_fitness = -numpy.inf
# Check the correctness of input parameters
if self.fitness_func is None or \
self.mut_prob < 0 or self.mut_prob > 1 or \
self.mut_bits < 1 or \
self.cross_prob < 0 or self.cross_prob > 1 or \
self.cross_points < 1 or \
self.select_type not in ["rank", "roulette", "tournament"] or \
(self.select_type == 'tournament' and self.tournament_size is None) or \
self.elitism not in [True, False]:
raise ValueError('Invalid input parameters found')
return
def generate_binary_population(self, pop_size, chromosome_b_length):
'''
This function will generate a population in binary format according to the given population size and chromosome
binary length.
:param pop_size: size of population
:param chromosome_b_length: binary length of chromosome
'''
self.population = []
for i in range(pop_size):
chromosome = []
for j in range (chromosome_b_length):
if random.uniform(0, 1) > 0.5:
chromosome.append(1)
else:
chromosome.append(0)
#chromesome = [random.randint(0, 1)for j in range(chromosome_b_length)]
self.population.append(IndividualGene(chromosome, 0))
self.population_size = pop_size
return
def evaluate_population(self):
'''
This function will evaluate the fitness of all the chromosomes within current population
'''
# Emumerate every individual gene within current populate and evaluate each's fitness
fitness_sum = 0
for gene in self.population:
gene.fitness_val = self.fitness_func(gene.chromosome, self.fitness_func_context)
fitness_sum += gene.fitness_val
self.fitness_sum = fitness_sum
return
def sort_population(self):
'''
This function will do the sorting on all the chromosomes within current population
'''
self.population.sort(key=lambda x: x.fitness_val)
# update best chromosome and fitness value
if (self.population[-1].fitness_val > self.best_fitness):
self.best_chromosome = self.population[-1].chromosome
self.best_fitness = self.population[-1].fitness_val
print("-----best fitness: %d" % self.best_fitness)
return
def individual_rank_select(self):
'''
This function will randomly pick up parent candidates from current population based on the rank possibility
:return: return one selected parent
'''
rank_sum = numpy.cumsum(range(1, self.population_size + 1))[-1]
rank_random = random.uniform(0, rank_sum)
rank_list = list(range(self.population_size))
# do sorting on the rank list
rank_list.sort(key=lambda x: self.population[x].fitness_val)
rank_sum = 0
for i in range(self.population_size):
rank_sum += i+1
if rank_sum > rank_random:
return self.population[rank_list[i]]
return self.population[rank_list[-1]]
def individual_roulette_select(self):
'''
This function will randomly pick up parent candidates from current population based on the fitness possibility
:return: return one selected parent
'''
roulette_sum = self.fitness_sum
roulette_random = random.uniform(0, roulette_sum)
roulette_sum = 0
for i in range(self.population_size):
roulette_sum += self.population[i].fitness_val
if roulette_sum > roulette_random:
return self.population[i]
return self.population[-1]
def individual_tournament(self):
'''
This function will randomly pick up parent candidates from current population with the number of tournament size.
Among them, only two of them will be returned
:return: return one selected parent
'''
tournament_list = []
if (self.tournament_size >= self.population_size):
# if tournament size is larger or equal to population size, the tournament list is just the whole population list
tournament_list = list(range(self.population_size))
else:
# pick up parent candidates from current population with the number of tournament size
temp_random = random.randrange(0, self.population_size)
tournament_list = [temp_random]
for i in range(1, self.tournament_size):
while temp_random in tournament_list:
temp_random = random.randrange(0, self.population_size)
tournament_list.append(temp_random)
# do sorting on the tournament list
tournament_list.sort(key=lambda x: self.population[x].fitness_val)
# return two candidates with highest fitness values
return self.population[tournament_list[-1]]
def select_parents(self):
'''
this function will select two parent lists based on the selection type configured
:return: two parent lists selected
'''
parent_list=[]
#
if (self.select_type == 'rank'):
for i in range(self.population_size):
parent = self.individual_rank_select()
parent_list.append(parent)
elif (self.select_type == 'roulette'):
for i in range(self.population_size):
parent = self.individual_roulette_select()
parent_list.append(parent)
elif (self.select_type == 'tournament'):
for i in range (self.population_size):
parent = self.individual_tournament()
parent_list.append(parent)
return parent_list
def crossover(self, parent_list):
'''
this function is to do cross-over with parent chromosome list and return new chromosome list
:param parent_list: the list of parent chromosome
:return: new chromosome list
'''
new_population = []
for i in range(0, len(parent_list), 2):
parent1 = parent_list[i]
if (i + 1) >= len(parent_list):
parent2 = parent_list[0]
else:
parent2 = parent_list[i + 1]
chromosome_len = len(self.population[0].chromosome)
if self.cross_points == 1:
if random.uniform(0, 1) < self.cross_prob:
# generate one cross point
cross_point = random.randrange(1, chromosome_len-1)
# do cross over on two parent chromosome
new1 = parent1.chromosome[:cross_point]+parent2.chromosome[cross_point:]
new2 = parent2.chromosome[:cross_point]+parent1.chromosome[cross_point:]
# add new chromosome into new population
new_population.append(IndividualGene(new1, self.fitness_func(new1, self.fitness_func_context)))
new_population.append(IndividualGene(new2, self.fitness_func(new2, self.fitness_func_context)))
else:
new_population.append(IndividualGene(parent1.chromosome, parent1.fitness_val))
new_population.append(IndividualGene(parent2.chromosome, parent2.fitness_val))
elif(self.cross_points == 2):
if random.uniform(0, 1) < self.cross_prob:
# generate two cross points
cross_point1 = random.randrange(1, chromosome_len-1)
cross_point2 = random.randrange(1, chromosome_len-1)
# compare two cross points
if (cross_point1 > cross_point2):
# do cross over on two parent chromosome
new1 = parent1.chromosome[:cross_point2]+parent2.chromosome[cross_point2:cross_point1]+parent1.chromosome[cross_point1:]
new2 = parent2.chromosome[:cross_point2]+parent1.chromosome[cross_point2:cross_point1]+parent2.chromosome[cross_point1:]
else:
# do cross over on two parent chromosome
new1 = parent1.chromosome[:cross_point1] + parent2.chromosome[cross_point1:cross_point2] + parent1.chromosome[cross_point2:]
new2 = parent2.chromosome[:cross_point1] + parent1.chromosome[cross_point1:cross_point2] + parent2.chromosome[cross_point2:]
# add new chromosome into new population
new_population.append(IndividualGene(new1, self.fitness_func(new1, self.fitness_func_context)))
new_population.append(IndividualGene(new2, self.fitness_func(new2, self.fitness_func_context)))
else:
new_population.append(IndividualGene(parent1.chromosome, parent1.fitness_val))
new_population.append(IndividualGene(parent2.chromosome, parent2.fitness_val))
else:
# more than 2 cross points are not supported now
raise ValueError('> 2 cross points are not supported')
return new_population
def mutation(self, new_population):
'''
This function is to do mutation on the input new chromosome list
:param new_population: the list of new chromosome
:return: new chromosome list after mutation
'''
print("mutation probability %f"%self.mut_prob)
chromosome_len = len(self.population[0].chromosome)
for i in range(self.population_size):
for j in range(chromosome_len):
if random.uniform(0, 1) < self.mut_prob:
if (new_population[i].chromosome[j] == 1):
new_population[i].chromosome[j] = 0
else:
new_population[i].chromosome[j] = 1
return new_population
def mating(self, new_population):
'''
This function is to combine new population with current population, sort and leave first ranked chromosomes
:param new_population: the list of new chromosome
'''
pool_list = self.population+new_population
pool_list.sort(key=lambda x: x.fitness_val, reverse=True)
self.population = pool_list[:self.population_size]
return
def diversity_measure(self, values):
'''
This function is to measure diversity of a population.
:param values: context for value calculation
'''
L = len(self.population[0].chromosome)
def calc_pj(self, j):
N = self.population_size
S_fabs = L #FIXME
g_avg = 0.
for i in range(N):
if self.population[i].chromosome[j] == 1:
g_avg += values[j]
g_avg /= L
pj = 0.
for i in range(N):
if self.population[i].chromosome[j] == 1:
itm = values[j] - g_avg
else:
itm = -g_avg
itm *= itm
pj += itm
pj = math.sqrt(pj)
pj *= 1/(S_fabs*N)
print("pj - %d : %f : %f"%(j, pj, g_avg))
#FIXME: how to avoid zero?
if math.isclose(pj,0.,rel_tol=1e-5) :
pj = sys.float_info.epsilon
return pj
d = 0.
for j in range (L):
pj = calc_pj(self, j)
d += pj * math.log(pj)
d = 1+ 1/d
return d
def mutation_diversity(self, lambda1, lambda2, k5, k6, k7, values):
'''
This function is to do mutation on the input new chromosome list with diversity measurement.
:param 0 < lambda1 < lambda2 < 1 , O<k6 <k5 < 1 , and k7 > 0 is almost equal to 0
:param values: context for value calculation
:return: update self.mut_prob
'''
d = self.diversity_measure(values)
print("diversity measurement %f"%d)
if d < lambda1:
self.mut_prob = k5
elif d < lambda2:
self.mut_prob = k6
else:
self.mut_prob = k7
def knapsack_fitness_function(chromosome, context):
'''
This is the fitness function for 0-1 knapsack problem
:param chromosome:current chromosome for fitness calculation
:param context: context for fitness calculation
:return: fitness value caculated
'''
params = context
total_values = 0
total_weights = 0
for i, bit in enumerate(chromosome):
if bit == 1:
total_values += params.get('item_values')[i]
total_weights += params.get('item_weights')[i]
if total_weights > params.get('bag_size'):
return 0
else:
return total_values
if __name__ == "__main__":
"""
Getting parameters from the given text file.
"""
params, file_name = get_params()
iter_number = params.get('iter_number')
print(params)
'''
Get the item number
'''
item_num = len(params.get('item_values'))
'''
Initialize GADM algorithm context
'''
GADM = DiversityMutationGA(knapsack_fitness_function, params, "tournament", 0.05, 1, 0.95, 2, True, params.get('tournament_size'))
'''
Generate binary population with given binary chromosume length
'''
GADM.generate_binary_population(params.get('pop_size'), item_num)
'''
Do Evaluation and sorting on current population
'''
GADM.evaluate_population()
GADM.sort_population()
'''
Selection
'''
parent_list = GADM.select_parents()
for index in range(iter_number):
print("generation: %d start"% index)
'''
Crossover
'''
next_population = GADM.crossover(parent_list)
'''
perform diversity-guided mutation
A1 = 0 . 01, Az -----0. 25, ks = 0 . 60, k6 = 0.03, and kz --~ 0. 000 01
'''
GADM.mutation_diversity(0.01, 0.25, 0.60, 0.03, 0.00001, params.get('item_values'))
next_population = GADM.mutation(next_population)
'''
Mating and update current population
'''
GADM.mating(next_population)
'''
Do Evaluation and sorting on current population
'''
GADM.evaluate_population()
GADM.sort_population()
'''
Selection
'''
parent_list = GADM.select_parents()
#print("generation: %d finish"%index)
# %%