-
Notifications
You must be signed in to change notification settings - Fork 19
/
app_maths.tex
125 lines (107 loc) · 2.61 KB
/
app_maths.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
\begin{flushright} {\tiny {\color{gray} maths.tex}} \end{flushright}
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%------------------------------------------------------
\subsection{Inverse of a 3x3 matrix \label{sec:inv2x2}}
Let us assume we wish to solve the
system $\bm A \cdot \vec X = \vec b$, with $\vec X=(x,y)$. Then the solution is given by
The solution is given by
\[
x=\frac{1}{det(\bm A)}
\left|
\begin{array}{cc}
b_1 & a_{21} \\
b_2 & a_{22}
\end{array}
\right|
\qquad
y=\frac{1}{det(\bm A)}
\left|
\begin{array}{cc}
a_{11} & b_1\\
a_{21} & b_2
\end{array}
\right|
\]
%------------------------------------------------------
\subsection{Inverse of a 3x3 matrix \label{sec:inv3x3}}
Let us consider the $3 \times 3$ matrix ${\bm M}$
\[
{\bm M}=
\left(
\begin{array}{ccc}
M_{xx} & M_{xy} & M_{xz} \\
M_{yx} & M_{yy} & M_{yz} \\
M_{zx} & M_{zy} & M_{zz}
\end{array}
\right)
\]
\begin{enumerate}
\item
Find $det({\bm M})$, the determinant of the Matrix ${\bm M}$.
The determinant will usually show up in the denominator of the inverse.
If the determinant is zero, the matrix won't have an inverse.
\item Find ${\bm M}^T$ , the transpose of the matrix. Transposing means reflecting
the matrix about the main diagonal.
\[
{\bm M}^T=
\left(
\begin{array}{ccc}
M_{xx} & M_{yx} & M_{zx} \\
M_{xy} & M_{yy} & M_{zy} \\
M_{xz} & M_{yz} & M_{zz}
\end{array}
\right)
\]
\item Find the determinant of each of the $2\times2$
minor matrices. For instance $\tilde{M}_{xx}=M_{yy}M_{zz}-M_{yz}M_{zy}$,
or $\tilde{M}_{xz}=M_{xy}M_{yz}- M_{xz}M_{yy}$.
\item assemble the $\tilde{\bm M}$ matrix:
\[
\tilde{\bm M}=
\left(
\begin{array}{ccc}
+\tilde{M}_{xx} & -\tilde{M}_{xy} & +\tilde{M}_{xz} \\
-\tilde{M}_{yx} & +\tilde{M}_{yy} & -\tilde{M}_{yz} \\
+\tilde{M}_{zx} & -\tilde{M}_{zy} & +\tilde{M}_{zz}
\end{array}
\right)
\]
\item the inverse of ${\bm M}$ is then given by
\[
{\bm M}^{1} = \frac{1}{det({\bm M})} \tilde{\bm M}
\]
\end{enumerate}
Another approach which of course is equivalent to the above is Cramer's rule.
Let us assume we wish to solve the
system $\bm A \cdot \vec X = \vec b$, with $\vec X=(x,y,z)$. Then the solution is given by
\[
x=
\frac{1}{det(\bm M)}
\left|
\begin{array}{ccc}
b_1 & a_{12} & a_{13} \\
b_2 & a_{22} & a_{23} \\
b_3 & a_{32} & a_{33}
\end{array}
\right|
\qquad
y=
\frac{1}{det(\bm M)}
\left|
\begin{array}{ccc}
a_{11} & b_1 & a_{13} \\
a_{21} & b_2 & a_{23} \\
a_{31} & b_3 & a_{33}
\end{array}
\right|
\qquad
z=
\frac{1}{det(\bm M)}
\left|
\begin{array}{ccc}
a_{11} & a_{12} & b_1\\
a_{21} & a_{22} & b_2\\
a_{31} & a_{32} & b_3
\end{array}
\right|
\]