-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathchap6.tex
274 lines (269 loc) · 16.6 KB
/
chap6.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
%!TEX root = ./main.tex
\section{Inner Product Spaces}
\subsubsection*{Motivation}
\begin{definition}
In $\b R^n$, the dot product of $\vec x$ and $\vec y$ is defined by
\[ \vec x \cdot \vec y := x_1y_1 + x_2y_2 + \cdots + x_ny_n\]
for $\vec x = (\li xn), \vec y = (\li yn)$.
\end{definition}
\subsection{Inner Product and Norms}
\subsubsection*{Settings}
$V$ is a vector space over $\b F$, we can define the following mapping $ \la \ast, \ast \ra : V \times V \to \b F$.
\begin{definition}
$\la \cdot, \cdot \ra$ is called an inner product if it satisfying the following rules:
\begin{enumerate}
\item(additivity in the first slot) $\la \vec v + \vec u, \vec w \ra = \la \vec v + \vec w \ra + \la \vec u, \vec w \ra, \ \forall \vec v, \vec u, \vec w \in V$
\item(homogeneity in the first slot) $\la \lambda \vec v, \vec w \ra = \lambda \la \vec v + \vec w \ra, \ \forall \vec v \vec u, \vec w \in V, \lambda \in \b F$
\item(conjugate symmetry) $\la \vec v, \vec w \ra = \overline{\la \vec w, \vec v \ra}, \ \forall \vec v,\vec w \in V$
\item(positivity) $\la \vec v, \vec v \ra \geq 0, \ \forall \vec v \in V$
\item(definiteness) $\la \vec v, \vec v \ra = 0$ iff $\vec v = \vec 0$.
\end{enumerate}
\end{definition}
\begin{question}
What about linearity in the second slot?
\end{question}
\begin{answer} We can compute
\[ \la \vec v, \vec u + \vec w \ra = \overline{\la \vec u + \vec w, \vec v\ra} = \overline{\la \vec u, \vec v \ra + \la \vec w, \vec v \ra} = \overline{\la \vec u, \vec v \ra} + \overline{\la \vec w, \vec v\ra } = \la \vec v, \vec u\ra + \la \vec v, \vec w\ra\]
\[ \la \vec v, \lambda \vec u\ra = \overline{\la \lambda \vec u, \vec v\ra} = \overline{\lambda \la \vec u,\vec v\ra} = \bar \lambda \ \overline{\la \vec u, \vec v\ra} = \bar \lambda \la \vec v, \vec u \ra\]
Not quite. \frownie{}
\end{answer}
\begin{remark}
If $\vec v \in V$ is fixed then the function $\la \ast, \vec v \ra : \vec u \mapsto \la \vec u, \vec v \ra$ is a function functional.
\end{remark}
\begin{example}
On $\b R^n$, we could use any function of the type
\[ c_1x_1y_1 + c_2x_2y_2 + \cdots + c_nx_ny_n\] where all $c_j \in \b R^+$.
\end{example}
\begin{remark}[Generalization to $\b C^n$]
The inner product of this form of the standard product to $\b C^n$ can be defined as
\[ \la \vec x, \vec y \ra = x_1\bar y_1 + x_2\bar y_2 + \cdots + x_n\bar y_n\]
\end{remark}
\begin{remark}[Generalization to any function space]
\[ \la f, g \ra : = \int_D f(t)\overline{g(t)} dt\]
or generally \[ \la f, g \ra : = \int_D f(t)\overline{g(t)}w(t) dt\]
where $w(t)$ is the positive weight function. e.g. if $V = \c P(\b R)$, or $V = \c P(\b C)$, then
\[ \la f, g \ra : = \int_0^\infty f(t)\overline{g(t)}e^{-t} dt\]
\end{remark}
\begin{definition}
For $\vec v \in V$, the (Euclidean) Norm is defined as
\[ ||\vec v|| : = \sqrt{\la \vec v,\vec v \ra}\]
\end{definition}
\begin{theorem}(Properties of Norms)
\begin{enumerate}
\item $||\lambda \vec v || = |\lambda| \ ||\vec v|| \ \forall \vec v \in V, \forall \lambda \in \b F $
\item $||\vec v|| > 0$ for all $\vec v \in V$
\item $||\vec v|| = 0$ if and only if $\vec v = \vec 0$
\end{enumerate}
\end{theorem}
\begin{definition}
An inner product space is a vector space $V$ along with and inner product on $V$.
\end{definition}
\begin{definition}
For $\vec u,\vec v \in V$, we say $\vec u$ and $\vec v$ is orthogonal if $\la \vec u, \vec v\ra = 0$
\end{definition}
\begin{theorem}[Pythagorean Theorem] $ $
\begin{center}
\begin{tikzpicture}
\draw[->, very thick] (4,0) -- (4,3);
\draw[->, very thick] (0,0) -- (4,0);
\draw[->, very thick] (0,0) -- (4,3);
\draw (2,0) node[anchor = north] {$\vec u$};
\draw (4,1.5) node[anchor = east] {$\vec v$};
\end{tikzpicture}
\end{center}
\[ ||\vec u + \vec v||^2 = ||\vec u||^2 + ||\vec v||^2 \iff \la \vec u + \vec v, \vec u + \vec v\ra = \la \vec u, \vec u \ra + \la \vec v, \vec v \ra \]
\end{theorem}
\begin{proof} We compute
\[ \la \vec u + \vec v, \vec u + \vec v\ra = \la \vec u,\vec u \ra + \la \vec u , \vec v \ra + \la \vec v, \vec u \ra + \la \vec v,\vec v \ra = \la \vec u,\vec u \ra + 0 + 0 + \la \vec v,\vec v \ra = ||\vec u|| + ||\vec v|| \]
\end{proof}
\subsubsection*{Obeservation}
Given $\vec u,\vec v \in V$ such that $\vec v \neq 0$, we want to modify $\vec u$ such that $\vec u + c\vec v$ is orthogonal to $\vec v$. We know that $\la \vec v + c\vec v, \vec v \ra = 0$, solve for $c$ gives $c = \displaystyle\frac{-\la \vec u, \vec v\ra}{\la \vec v, \vec v \ra}$.
\begin{center}
\begin{tikzpicture}
\draw[->, very thick, color = magenta] (0,0) -- (1, 5.5);
\draw[->, very thick, color = green] (0,0) -- (3, 4);
\draw[->, very thick] (0,0) -- (2,2.66666666);
\draw[->, very thick, color = blue] (1, 5.5) -- (3,4);
\draw (2,2) node {$\vec v$};
\draw (0.2,4) node {$\vec u$};
\draw (3,3.2) node {$c\vec v$};
\draw (2.3, 5.2) node {$\vec u + c\vec v$};
\end{tikzpicture}
An orthogonal decompostion
\end{center}
\begin{theorem}[Cauchy-Schwarz Inequality]
For any $u,v \in V$ where $V$ is a inner product space, the following holds
\[ |\la \vec u,\vec v \ra| \leq ||\vec u|| \cdot ||\vec v||\]
\end{theorem}
\begin{proof}
Given $\vec u,\vec v \in V$, we can assume without the loss of generality that $\vec v \neq 0$. So we can consider vectors $\vec u + c\vec v$ and $\vec v$ that are orthogonal for the choice that
\[ c: = \frac{ - \la \vec u,\vec v \ra}{\la \vec v,\vec v\ra}\]
By Pathgrathrean theorem, $||\vec u + c\vec v||^2 + ||c\vec v||^2 = ||\vec u||^2$. But $||c\vec v||^2 = |c|^2||\vec v||^2$ and recall \[ c= \frac{- \la \vec u,\vec v\ra}{\la \vec v,\vec v\ra}, \text{ so } c^2= \frac{|\la \vec u, \vec v\ra|^2}{\la \vec v,\vec v\ra^2} = \frac{|\la \vec u, \vec v \ra|^2}{||\vec v||^4}, \text{ therefore } ||c\vec v||^2 = \frac{|\la \vec u, \vec v \ra|^2}{||\vec v||^4} ||\vec v||^2 = \frac{|\la \vec u, \vec v \ra|^2}{||\vec v||^2}\]
So by dropping $||\vec u + c\vec v||^2 > 0$, we obtain $||c\vec v||^2 \leq ||\vec u||$, i.e,
\[ \frac{|\la \vec u, \vec v \ra|^2}{||\vec v||^2} \leq ||\vec u||^2 \implies |\la \vec u,\vec v\ra|^2 \leq ||\vec u|^2 \cdot ||\vec v||^2 \implies |\la \vec u,\vec v \ra|^2 \leq ||\vec u|| \cdot ||\vec v||\]
\end{proof}
\begin{theorem}[Triangle Inequality]
\[ ||\mathbf u + \mathbf v|| \leq ||\mathbf u|| + ||\mathbf v||\]
\end{theorem}
\begin{proof}
We have
\begin{align*}
||\vec u + \vec v||^2 &= \langle \vec u + \vec v, \vec u + \vec v \rangle = \la \vec u + \vec u \ra + \cg{\vec v, \vec v} + \cg{\vec u, \vec v} + \cg{\vec v, \vec u} \\
&= ||\vec u||^2 + ||\vec v||^2 + \cg{\vec u + \vec v} + \bar{\cg{\vec u + \vec v}} = ||\vec u||^2 + ||\vec v||^2 + 2\text{Re}\cg{\vec u, \vec v} \\
&\leq ||\vec u||^2 + ||\vec v||^2 + 2|\cg{\vec u, \vec v}| \leq ||\vec u||^2 + ||\vec v||^2 + 2||\vec u||\ ||\vec v|| \\
&= \left(||\vec u|| + ||\vec v||\right)^2
\end{align*}
\end{proof}
\begin{theorem}[Alternative Version of Triangle Inequality]
\[ \big| ||\vec u|| - ||\vec v|| \big| \leq ||\vec u - \vec v||\]
\end{theorem}
\begin{proof}
Notice that
\[ ||\vec u|| - ||\vec v|| \leq ||\vec u - \vec v|| \iff ||\vec u|| \leq ||\vec u - \vec v|| + ||\vec v||\]
Which is the triangle inequaliy. Swapping out $\vec u$ and $\vec v$ gives us \[ ||\vec v|| - ||\vec u|| \leq ||\vec v - \vec u|| \iff ||\vec u|| \leq ||\vec u - \vec v|| + ||\vec v||\]
Combining these equations gives us
\[ \big| ||\vec u|| - ||\vec v|| \big| \leq ||\vec u - \vec v||\]
\end{proof}
\begin{fact}[Fun inequalities]
\[ ||\vec u + \vec v||^2 + ||\vec u + \vec v||^2 = 2\left(||\vec u||^2 + ||\vec v||^2\right)\]
\end{fact}
\subsection{Orthogonality}
\begin{definition}
A list $\li{\vec v}{k}$ is $V$ is called orthonormal if \[ \la \vec v_i \vec v_j \ra = \delta_{ij} = \left\{\begin{array}{cc}
1 & \text{if } i = j \\
0 & \text{if } i \neq j \\
\end{array} \right.\]
\end{definition}
\begin{lemma}
Any list of orthonormal vectors is necessarily linearly indepedent.
\end{lemma}
\begin{proof}
Suppose $\lincomb{\alpha}{\vec v}{k} = \vec 0$. We can compute on the standard inner product
\[ \la \lincomb{\alpha}{\vec v}{k} , \vec v_1 \ra = \alpha_1 \la \vec v_1, \vec v_1 \ra + \alpha_2 \la \vec v_2, \vec v_1 \ra + \cdots + \alpha_k \la \vec v_k, \vec v_1 \ra \implies \alpha_1 = 0\]
\[ \la \lincomb{\alpha}{\vec v}{k} , \vec v_2 \ra = \alpha_1 \la \vec v_2, \vec v_2 \ra + \alpha_2 \la \vec v_2, \vec v_2 \ra + \cdots + \alpha_k \la \vec v_k, \vec v_2 \ra \implies \alpha_1 = 0\]
\[ \vdots \]
\[ \la \lincomb{\alpha}{\vec v}{k} , \vec v_k \ra = \alpha_1 \la \vec v_1, \vec v_k \ra + \alpha_2 \la \vec v_2, \vec v_k \ra + \cdots + \alpha_k \la \vec v_k, \vec v_k \ra \implies \alpha_k = 0\]
Hence $\li{\vec v}k$ is linearly indepedent.
\end{proof}
\begin{question}
What is nice about orthonormal basis?
\end{question}
\begin{answer}
If $(\li{\vec v}n)$ is an orthonormal basis, then an arbitary vector can be written as
\[ \vec v = \la \vec v, \vec v_1 \ra \vec v_1 + \la \vec v, \vec v_2 \ra \vec v_2 + \cdots + \la \vec v, \vec v_n \ra \vec v_n\]
Furthermore, we can conclude the following theorem:
\end{answer}
\begin{theorem}[Generalized Pythagorean Theorem]
\[ ||\vec v||^2 = \sum_{j = 1}^{n} \big| \la \vec v, \vec v_j \ra \big|^2\]
\end{theorem}
\begin{algorithm}[Gram-Schmidt Algorithm]
\texttt{Input}: Any $\li{\vec v}m$ that is linearly independent. \\
\texttt{Output}: $\li{\vec e}m$ such that $\vec e_j \in \spa (\li{\vec v}j)$ for all $j \leq n$.
\begin{proof}[Process] $ $
\begin{align*}\vec e_1 &= \frac{\vec v_1}{||\vec v_1||} \\
\vec e_2 &= \frac{\vec v_2 - \la \vec v_2, \vec e_1 \ra \vec e_1}{||\vec v_2 - \la \vec v_2, \vec e_1 \ra \vec e_1||} \\
\vec e_3 &= \frac{\vec v_3 - \la \vec v_3, \vec e_1 \ra \vec e_1 - \la \vec v_3, \vec e_2 \ra \vec e_2}{||\vec v_3 - \la \vec v_3, \vec e_1 \ra \vec e_1 - \la \vec v_3, \vec e_2 \ra \vec e_2||} \\
\vdots \\
\vec e_n &= \frac{\vec v_n - \la \vec v_{n}, \vec e_1 \ra \vec e_1 - \la \vec v_n, \vec e_2 \ra \vec e_n \cdots - \la \vec v_n - \vec e_{n-1} \ra \vec e_{n-1}}{||\vec v_n - \la \vec v_{n}, \vec e_1 \ra \vec e_1 - \la \vec v_n, \vec e_2 \ra \vec e_n \cdots - \la \vec v_n - \vec e_{n-1} \ra \vec e_{n-1}||}
\end{align*}
\end{proof}
\end{algorithm}
\begin{proposition}
Every finite inner product vector space has a orthonormal basis.
\end{proposition}
\begin{proof}
Suppose $V$ is a finite dimensional vector space. Let $\li{\vec v}n$ be a basis for $V$. We then apply Gram-Schmidt Algorithm to the basis to obtain a orthonormal basis $\li{\vec e}n$.
\end{proof}
\begin{remark}[Projection orthonal with the repect to inner product]
Given a subsace $U$ of $V$ for finie dimensioanl vector space $V$, there is a projector $P_V$ that project all vectors in $V$ on $V$ orthogonally.
\end{remark}
\begin{remark}[Relations between inner product and linear functionals]
Suppose $V$ is finite dimensional vector space. Given any $\vec u \in V$, then function $\la \cdot, \vec u\ra$ is a linear functional (i.e. an element of $V' = \c L(V,\b F)$)
\end{remark}
\begin{theorem}[Riesz Representation Theorem]
For any $\varphi \in V'$ there exists a \textit{unique} $\vec u \in V$ such that $\la \vec v, \vec u \ra = \varphi (\vec v) = \varphi(\vec v)$ for al $\vec v \in V$.
\end{theorem}
\newpage
\begin{proof} \textbf{Existence} \\
Take an orthonormal basis $\li{\vec v}n$. of $V$. Any $\vec v$ can be written as a linear combination the basis (To preserve linearity we want to put $\vec v$ into the first slot)
\begin{align*} \vec v &= \la \vec v , \vec e_1 \vec \ra \vec e_1 + \la \vec v, \vec e_2 \ra + \cdots + \la \vec v, \vec e_n \ra \\
\varphi(v) &= \la \vec v , \vec e_1 \vec \ra \varphi(\vec e_1) + \la \vec v, \vec e_2 \ra \varphi(\vec e_2)+ \cdots + \la \vec v, \vec e_n \ra \varphi(\vec e_n) \\
&= \la \vec v + \bar{\varphi(\vec e_1)}e_1 + \bar{\varphi(\vec e_2)}e_2 + \cdots + \bar{\varphi(\vec e_n)}\vec e_n \ra \\
&= \vec u
\end{align*}
\textbf{Uniqueness} \\
Suppose there are $\vec u_1, \vec u_2$ such that $\la \vec v, \vec u_1 \ra = \la \vec v, \vec u_2 \ra$ for all $\vec v \in V$. Take $\vec v = \vec u_1 - \vec u_2$. We can see that
\[ \la \vec v_1, \vec u_1 \ra + \la \vec v, \vec v_2 \ra \iff \la \vec v, \vec u_1 - \vec u_2 \ra\]
Plug in $v$ and we get
\[ \la \vec u_1 - \vec u_2, \vec u_1 - \vec u_2 \ra = ||\vec u_1 - \vec u_2||^2 = 0\]
This means that $\vec u_1 - \vec u_2 = 0$, or $\vec u_1 = \vec u_2$, hence such $\vec u$ is unique.
\end{proof}
\begin{example}
Let $V := \c P(\b C)$ and let $\displaystyle \varphi(p) := \int_{-1}^1 p(t) \sin t \cdot dt$. Find a reprsentation in $V$ with with respect to
\[ \la f,g \ra = \int_{-1}^1 f(t) \bar{g(t)} dt\]
Suppose $p(t) = a_0 + a_1t + a_2t^2$.
\end{example}
\subsection{Orthogonality and Orthogonal Projections}
\begin{definition}
Given an inner produce space $V$ and its subset $U$ of $V$ we can define
\[ U^\perp := \b \vec v \in V : \lb \vec u , \vec v \ra = 0 \ \forall \vec u \in U \rb \]
\end{definition}
\begin{theorem}
Basic facts about orthogonal complement
\begin{enumerate}[label = (\alph*)]
\item If $U$ is a susbet of $V$, then $U^\perp$ is a subspace of $V$.
\item $\lb \vec 0 \rb^\perp = V$
\item $V^\perp = \lb \vec 0 \rb$
\item $U \cap U^\perp \subseteq \lb \vec 0 \rb$
\item If $U \subseteq W$ then $U^\perp \supseteq W^\perp$
\end{enumerate}
\end{theorem}
\begin{proof} $ $
\begin{enumerate}[label = (\alph*)]
\item Clearly $\vec 0 \in U^\perp$ as $\la \vec v, \vec 0 \ra = 0 \ \forall \vec v \in V$. Take $\vec v_1, \vec v_2 \in U^\perp$ and $\lambda \in \b F$, then $\la \vec v_1 + \lambda \vec v_2, \vec u \ra = \la \vec v_1, \vec u \ra + \lambda \la \vec v_2, \vec u \ra = 0 \ \forall \vec u \in U$.
\item Trivial by part (c).
\item Trivial by part (b).
\item Suppose $\vec v \in U \cap U^\perp$, then $\la \vec v, \vec v \ra = 0 \implies \vec v = \vec 0$.
\item Suppose $\vec v \in W^\perp$, then $\la \vec v, \vec w \ra = 0 \ \forall \vec w \in W$. Since $U \subseteq W$, $\la \vec v, \vec u \ra = 0 \ \forall \vec u \in U$, hence $U^\perp \supseteq W^\perp$.
\end{enumerate}
\end{proof}
\begin{theorem}
If $V$ is a finite dimensional inner product space and $U$ is a subspace of $V$, then \[U \oplus U^\perp = V\]
\end{theorem}
\begin{proof}
We already know that the sum is direct by $U \cap U^\perp = \lb 0 \rb$. By Gram Schmidt we can construct an orthonormal basis of $U$ and extend it to a normal normal basis of $V$ we have $\li{\vec u}k, \li{\vec v}n$. We claim that $\li{\vec v}n$ is a basis of $U^\perp$ as $\la \vec u_i, \vec v_j \ra = 0$ for all $i$ in $1,2, \ldots, k$ and $j$ in $1,2, \ldots, n$. Hence $\li{\vec v}n \in U^\perp$. On the other hand,
\[ U^\perp \in \lincomb{\alpha}{\vec u}k + \lincomb{\beta}{\vec v}{n} \]
must satisify $\alpha_j = \la \vec v_i, \vec u_j \ra = \vec 0$ for all $i$ in $1,2, \ldots, k$. Therefore we have $U^\perp = \spa (\li{\vec v}n)$. Hence $U \oplus U^\perp = V$.
\end{proof}
\begin{theorem}
Suppose $U$ is a finite dimensional subspace of $V$. Then
\[ U = \left( U^\perp \right)^\perp\]
\end{theorem}
\begin{definition}
Suppose $U$ is a finite-dimensional subspace of $V$. The orthogonal projection of $V$ onto $U$ is the operator $P_U \in \c L(V)$ defined as follows:
For $\vec v \in V$, write $\vec v = \vec u + \vec w$, where $\vec u \in U$ and $\vec w \in U^\perp$ Then $P_Uv = u$.
\end{definition}
\begin{theorem}[Properties of the orthogonal projection $P_U$]
Suppose $U$ is finite dimensional subspace of $V$ and $\vec v \in V$. Then
\begin{enumerate}[label = (\alph*)]
\item $P_U \in \c L(V)$
\item $\range P_U = U$
\item $\nul P_U = U^\perp$
\item $P^2_U = P_U$
\item $\range (\b I - P_U) = U^\perp$
\item $(\b I - P_U)^2 = (\b I - P_U)$
\item $||P_U \vec v|| \leq ||\vec v||$
\item For every orthonormal basis $\li{\vec v}n$ of $U$, we have \[P_U \vec v = \la \vec v, \vec e_1 \ra \vec e_1 + \la \vec v, \vec e_2 \ra \vec e_2 + \cdots + \la \vec v, \vec e_n \ra \vec e_n\]
\end{enumerate}
\begin{center}
\begin{tikzpicture}
\draw[->, thick, color = blue] (0,0) -- (6,2.5);
\draw[->, thick, color = red] (0,0) -- (6,0);
\draw[->, thick, color = green] (6,0) -- (6,2.5);
\draw (3,1.25) node[anchor = south] {$\vec v$};
\draw (3,0) node[anchor = north] {$P_U \vec v$};
\draw (6,1.25) node[anchor = west] {$\vec v - P_U\vec v \perp U$};
\end{tikzpicture}
The red vector is the projection of the blue vector $\vec v$ onto subspace $U$.
\end{center}
\end{theorem}