-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.toc
38 lines (38 loc) · 3.43 KB
/
main.toc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
\contentsline {section}{\numberline {1}Vector Space}{3}{section.2}%
\contentsline {subsection}{\numberline {1.a}Vector Space over a field and subspace}{3}{subsection.3}%
\contentsline {subsection}{\numberline {1.b}Subspaces}{4}{subsection.9}%
\contentsline {subsection}{\numberline {1.c}Direct Sum}{8}{subsection.52}%
\contentsline {section}{\numberline {2}Finite Dimensional Vector Spaces}{10}{section.68}%
\contentsline {subsection}{\numberline {2.a}Linear Dependence and Independence}{10}{subsection.69}%
\contentsline {subsection}{\numberline {2.b}Bases and Dimension}{13}{subsection.105}%
\contentsline {section}{\numberline {3}Linear Maps}{17}{section.132}%
\contentsline {subsection}{\numberline {3.a}Linear Maps as Vector Space}{17}{subsection.133}%
\contentsline {subsection}{\numberline {3.b}Null Space and Range}{18}{subsection.144}%
\contentsline {subsection}{\numberline {3.c}Matrix Notation}{20}{subsection.165}%
\contentsline {subsection}{\numberline {3.d}Matrix Representation}{21}{subsection.168}%
\contentsline {subsection}{\numberline {3.e}Invertibility and Isomorphism}{22}{subsection.175}%
\contentsline {subsection}{\numberline {3.f}Duality}{25}{subsection.198}%
\contentsline {subsubsection}{\numberline {3.i}Matrix Representation of the dual map}{29}{subsubsection.244}%
\contentsline {section}{\numberline {4}Polynomials}{31}{section.253}%
\contentsline {subsection}{\numberline {4.a}Axler's Recap on Polynomial}{31}{subsection.258}%
\contentsline {subsection}{\numberline {4.b}Zero of polynomials and their algebraic manifestations}{31}{subsection.263}%
\contentsline {section}{\numberline {5}Eigenvalues, Eigenvectors, and Invariant Subspaces}{34}{section.286}%
\contentsline {subsection}{\numberline {5.a}Invariant Subspaces}{34}{subsection.287}%
\contentsline {subsubsection}{\numberline {5.i}Restriction Operators}{35}{subsubsection.315}%
\contentsline {subsection}{\numberline {5.b}Eigenvectors and Upper-Triangular Matrices}{35}{subsection.318}%
\contentsline {subsubsection}{\numberline {5.i}Polynomials in T}{35}{subsubsection.319}%
\contentsline {subsection}{\numberline {5.c}Eigenspaces and Diagonal Matrices}{39}{subsection.351}%
\contentsline {section}{\numberline {6}Inner Product Spaces}{41}{section.363}%
\contentsline {subsection}{\numberline {6.a}Inner Product and Norms}{41}{subsection.367}%
\contentsline {subsection}{\numberline {6.b}Orthogonality}{45}{subsection.410}%
\contentsline {subsection}{\numberline {6.c}Orthogonality and Orthogonal Projections}{47}{subsection.433}%
\contentsline {section}{\numberline {7}Operators on Inner Product Spaces}{50}{section.464}%
\contentsline {subsection}{\numberline {7.a}Self-Adjoint and Normal Operators}{50}{subsection.465}%
\contentsline {subsubsection}{\numberline {7.i}Matrix representation}{52}{subsubsection.487}%
\contentsline {subsection}{\numberline {7.b}Spectral Theorem}{54}{subsection.506}%
\contentsline {subsection}{\numberline {7.c}Positive Operators and Isometries}{56}{subsection.519}%
\contentsline {subsection}{\numberline {7.d}Polar Decomposition and Singular Value Decomposition}{58}{subsection.535}%
\contentsline {section}{\numberline {8}Operators on Complex Vector Spaces}{60}{section.546}%
\contentsline {subsection}{\numberline {8.c}Characteristic and Minimal Polynomial}{60}{subsection.547}%
\contentsline {subsection}{\numberline {8.d}Jordan Form}{61}{subsection.562}%
\contentsline {subsubsection}{\numberline {8.i}Observation}{61}{subsubsection.564}%