-
Notifications
You must be signed in to change notification settings - Fork 55
/
leave_one_out_stage2.py
328 lines (275 loc) · 15.7 KB
/
leave_one_out_stage2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import sys
import os
import uuid
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from random import randint
import torch
import torch.nn.functional as F
import cv2
import numpy as np
import torchvision
from tqdm import tqdm
from torchmetrics.functional.regression import pearson_corrcoef
from utils.general_utils import safe_state
from utils.loss_utils import l1_loss, ssim, monodisp
from utils.image_utils import psnr
from gaussian_renderer import render
from scene import Scene, GaussianModel
try:
from torch.utils.tensorboard.writer import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def leave_one_out_training(args, dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, train_id):
first_iter = 6000 # in this code, we just use the data from 6000 iter
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians, shuffle=False, extra_opts=args) # make sure we load "densify_until_iter" model
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
num_id, image_id = train_id
viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
for iteration in range(first_iter, opt.iterations + 1):
iter_start.record() # type: ignore
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 10000 == 0:
gaussians.oneupSHdegree()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()[:num_id] + scene.getTrainCameras().copy()[num_id+1:] # leave one out
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
bg = torch.rand((3), device="cuda") if opt.random_background else background
render_pkg = render(viewpoint_cam, gaussians, pipe, bg)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# Loss
loss, Ll1 = cal_loss(opt, args, image, render_pkg, viewpoint_cam, bg, mono_loss_type=args.mono_loss_type, iteration=iteration)
loss.backward()
iter_end.record() # type: ignore
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
num_gauss = len(gaussians._xyz)
if iteration % 10 == 0:
progress_bar.set_postfix({'Loss': f"{ema_loss_for_log:.{7}f}", 'n': f"{num_gauss}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background))
# Save
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
# Densification
if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
# if iteration % (opt.opacity_reset_interval // 2) == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
if iteration % opt.remove_outliers_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.remove_outliers(opt, iteration, linear=True)
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
# in the end, we use the cached gaussians and the final gaussians to get the \delta gaussians
cur_status = gaussians.cache
pre_status = torch.load(os.path.join(args.model_path, 'gaussians_cache.pth'))
diffs = {}
keys = ['_xyz', '_features_dc', '_features_rest', '_scaling', '_rotation', '_opacity']
for key, pre_c, cur_c in zip(keys, pre_status, cur_status):
diff = pre_c - cur_c
mean_diff = torch.mean(diff, dim=0).cpu().numpy()
std_diff = torch.std(diff, dim=0).cpu().numpy()
diffs[key] = [mean_diff, std_diff]
import pickle
with open(os.path.join(args.model_path, 'diffs.pkl'), 'wb') as f:
pickle.dump(diffs, f)
return dataset, gaussians, scene
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
args.model_path = os.path.join("./output/", unique_str)
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
if tb_writer and (idx < 5):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
torch.cuda.empty_cache()
def cal_loss(opt, args, image, render_pkg, viewpoint_cam, bg, silhouette_loss_type="bce", mono_loss_type="mid", iteration=0):
"""
Calculate the loss of the image, contains l1 loss and ssim loss.
l1 loss: Ll1 = l1_loss(image, gt_image)
ssim loss: Lssim = 1 - ssim(image, gt_image)
Optional: [silhouette loss, monodepth loss]
"""
gt_image = viewpoint_cam.original_image.to(image.dtype).cuda()
if opt.random_background:
gt_image = gt_image * viewpoint_cam.mask + bg[:, None, None] * (1 - viewpoint_cam.mask).squeeze()
Ll1 = l1_loss(image, gt_image)
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
if hasattr(args, "use_mask") and args.use_mask:
if silhouette_loss_type == "bce":
silhouette_loss = F.binary_cross_entropy(render_pkg["rendered_alpha"], viewpoint_cam.mask)
elif silhouette_loss_type == "mse":
silhouette_loss = F.mse_loss(render_pkg["rendered_alpha"], viewpoint_cam.mask)
else:
raise NotImplementedError
loss = loss + opt.lambda_silhouette * silhouette_loss
if hasattr(viewpoint_cam, "mono_depth") and viewpoint_cam.mono_depth is not None:
if mono_loss_type == "mid":
# we apply masked monocular loss
gt_mask = torch.where(viewpoint_cam.mask > 0.5, True, False)
render_mask = torch.where(render_pkg["rendered_alpha"] > 0.5, True, False)
mask = torch.logical_and(gt_mask, render_mask)
if mask.sum() < 10:
depth_loss = 0.0
else:
disp_mono = 1 / viewpoint_cam.mono_depth[mask].clamp(1e-6) # shape: [N]
disp_render = 1 / render_pkg["rendered_depth"][mask].clamp(1e-6) # shape: [N]
depth_loss = monodisp(disp_mono, disp_render, 'l1')[-1]
elif mono_loss_type == "pearson":
zoe_depth = viewpoint_cam.mono_depth[viewpoint_cam.mask > 0.5].clamp(1e-6)
rendered_depth = render_pkg["rendered_depth"][viewpoint_cam.mask > 0.5].clamp(1e-6)
depth_loss = min(
(1 - pearson_corrcoef( -zoe_depth, rendered_depth)),
(1 - pearson_corrcoef(1 / (zoe_depth + 200.), rendered_depth))
)
elif mono_loss_type == "dust3r":
gt_mask = torch.where(viewpoint_cam.mask > 0.5, True, False)
render_mask = torch.where(render_pkg["rendered_alpha"] > 0.5, True, False)
mask = torch.logical_and(gt_mask, render_mask)
if mask.sum() < 10:
depth_loss = 0.0
else:
disp_mono = 1 / viewpoint_cam.mono_depth[mask].clamp(1e-6) # shape: [N]
disp_render = 1 / render_pkg["rendered_depth"][mask].clamp(1e-6) # shape: [N]
depth_loss = torch.abs((disp_render - disp_mono)).mean()
depth_loss *= (opt.iterations - iteration) / opt.iterations # linear scheduler
else:
raise NotImplementedError
loss = loss + args.mono_depth_weight * depth_loss
return loss, Ll1
def train_3dgs(args, ids):
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
dataset = lp.extract(args)
pipeline = pp.extract(args)
model_path_root = args.model_path
for num_id, image_id in zip(range(args.sparse_view_num), ids): # num_id: leave one out id, image_id: the id of the image to be infered
args.model_path = os.path.join(model_path_root, f'leave_{image_id}')
dataset.model_path = args.model_path
args.start_checkpoint = os.path.join(args.model_path, 'chkpnt6000.pth') # load this ckpt
# os.makedirs(args.model_path, exist_ok=True)
leave_one_out_training(args,
dataset,
op.extract(args),
pipeline,
args.test_iterations,
args.save_iterations,
args.checkpoint_iterations,
args.start_checkpoint,
args.debug_from,
train_id = (num_id, image_id))
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[7_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[7_0000, 15_0000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
### some exp args
parser.add_argument("--sparse_view_num", type=int, default=-1,
help="Use sparse view or dense view, if sparse_view_num > 0, use sparse view, \
else use dense view. In sparse setting, sparse views will be used as training data, \
others will be used as testing data.")
parser.add_argument("--use_mask", default=True, help="Use masked image, by default True")
parser.add_argument('--use_dust3r', action='store_true', default=False,
help='use dust3r estimated poses')
parser.add_argument('--dust3r_json', type=str, default=None)
parser.add_argument("--init_pcd_name", default='origin', type=str, help="the init pcd name. 'random' for random, 'origin' for pcd from the whole scene")
parser.add_argument('--mono_depth_weight', type=float, default=0.0005, help="The rate of monodepth loss")
parser.add_argument('--mono_loss_type', type=str, default="mid")
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
assert args.sparse_view_num > 0, 'leave_one_out is for sparse view training'
assert os.path.exists(os.path.join(args.source_path, f"sparse_{args.sparse_view_num}.txt")), f"sparse_{args.sparse_view_num}.txt not found!"
ids = np.loadtxt(os.path.join(args.source_path, f"sparse_{args.sparse_view_num}.txt"), dtype=np.int32).tolist()
train_3dgs(args, ids)
# All done
print("\nAll training complete.")