-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
20 lines (14 loc) · 847 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
train = pd.read_csv('train_tmp.csv')
print(train.head())
print(train.axes)
trainSubset = train[['price', 'deal_probability', 'item_seq_number']]
numberOfStandardDeviationsToInclude = 0.5
trainSubset[((trainSubset.price - trainSubset.price.mean()) / trainSubset.price.std()).abs() < numberOfStandardDeviationsToInclude]
trainSubset[((trainSubset.deal_probability - trainSubset.deal_probability.mean()) / trainSubset.deal_probability.std()).abs() < numberOfStandardDeviationsToInclude]
trainSubset[((trainSubset.item_seq_number - trainSubset.item_seq_number.mean()) / trainSubset.item_seq_number.std()).abs() < numberOfStandardDeviationsToInclude]
pd.plotting.scatter_matrix(trainSubset, alpha = 0.3, figsize = (14,8), diagonal = 'kde')
plt.show()
print(trainSubset.head())