-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecommendation.py
73 lines (66 loc) · 2.07 KB
/
recommendation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
class Node:
def __init__(self, id, name):
self.id = id
self.children = []
self.name = name
def type(self):
return 'node'
def add_child(self, node, weight):
self.children.append((node, weight))
def get_weight(self, node, visited = None, weight = None):
if self == node:
return weight
if visited is None:
visited = []
if weight is None:
weight = 0.0
if self.children == []:
return False
weights = []
for (child, dist) in self.children:
if child not in visited:
visited.append(child)
w = child.get_weight(node, visited, weight + dist)
if w != None:
weights.append(w)
if weights == []:
return(10000)
else:
for visit in visited:
print(visit.name)
print(weights)
return(min(weights))
def rank_songs(self, songs):
song_weights = [(song, self.get_weight(song)) for song in songs]
ranked = []
while song_weights:
ranked.append(min(song_weights, key = lambda t: t[1]))
song_weights.remove(min(song_weights, key = lambda t: t[1]))
return(ranked)
class User(Node):
def type(self):
return 'user'
class Artist(Node):
def type(self):
return 'artist'
class Song(Node):
def type(self):
return 'song'
def subtractList(listA, listB):
return [item for item in listA if item not in listB]
def recommend(user):
queue = [user]
visit = []
songs = []
likes = user.children
likes = [x for (x,y) in likes]
while queue:
vertex = queue.pop(0)
if vertex not in visit:
visit.append(vertex)
connections = vertex.children
connections = [x for (x,y) in connections]
queue.extend(subtractList(connections,visit))
if vertex.type() == 'song' and vertex not in likes:
songs.append(vertex)
return user.rank_songs(songs)