Here, we just show how to get confidence intervals for the proportion or the mean obtained from a sample. For confidence intervalle of comparisons, see the other files.
n <- 100
a <- rbinom(n, size = 1, prob = 1/3)
table(a)
## a
## 0 1
## 73 27
prop.table(table(a))
## a
## 0 1
## 0.73 0.27
mean(a)
## [1] 0.27
prop.test(table(a))
##
## 1-sample proportions test with continuity correction
##
## data: table(a), null probability 0.5
## X-squared = 20.25, df = 1, p-value = 6.795e-06
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.6304 0.8116
## sample estimates:
## p
## 0.73
prop.test(table(a))$conf.int
## [1] 0.6304 0.8116
## attr(,"conf.level")
## [1] 0.95
n <- 100
a <- rnorm(n, mean = 100, sd = 15)
par(las = 1)
stripchart(a, method = "jitter", vertical = TRUE)
abline(h = mean(a), lty = 2)
boxplot(a)
hist(a)
rug(a)
plot(density(a))
abline(v = mean(a), lty = 2)
rug(a)
If the sample is small, you can use a dotchart
dotchart(a[1:20])
summary(a)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 61.4 89.6 98.7 98.7 108.0 133.0
mean(a)
## [1] 98.68
mean(a[abs(a - mean(a)) < 2 * sd(a)]) # after deleting point beyond 2 stddev
## [1] 98.42
t.test(a)
##
## One Sample t-test
##
## data: a
## t = 68.4, df = 99, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 95.82 101.55
## sample estimates:
## mean of x
## 98.68
t.test(a)$conf.int
## [1] 95.82 101.55
## attr(,"conf.level")
## [1] 0.95
require(boot)
## Loading required package: boot
sampmean <- function(x, d) {
mean(x[d])
}
boota <- boot(a, sampmean, 1000)
boot.ci(boota)
## Warning: bootstrap variances needed for studentized intervals
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = boota)
##
## Intervals :
## Level Normal Basic
## 95% ( 95.82, 101.65 ) ( 95.83, 101.73 )
##
## Level Percentile BCa
## 95% ( 95.64, 101.54 ) ( 95.69, 101.62 )
## Calculations and Intervals on Original Scale