-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsearch_database.py
35 lines (27 loc) · 1.22 KB
/
search_database.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from sklearn.metrics.pairwise import cosine_similarity
def search_database(query_vec, image_id_to_semantic_database, k):
""" Given a shape (50,) representative vector for a query, return
the top k image ids of images matching the query.
Parameters
----------
query_vec : nd.array
normalized semantic features of a query
image_id_to_semantic_database : dictionary
maps image ids to normalized semantic features
k : scalar
determines how many of the top image ids should be returned
Returns
-------
An array of shape (k,) containing the image ids of the top k
images. """
top_k_cos_sim = np.zeros(k)
top_k_id = np.zeros(k)
for id, semantic in image_id_to_semantic_database.items():
cos_sim = cosine_similarity(query_vec.reshape(1, -1), semantic.reshape(1, -1))[0][0]
if cos_sim > np.min(top_k_cos_sim):
new_i = np.argmin(top_k_cos_sim)
top_k_cos_sim[new_i] = cos_sim
top_k_id[new_i] = id
# sort in descending order 1 -> 0
sort_i = np.argsort(top_k_cos_sim)[::-1]
return top_k_id[sort_i]