forked from Misfit911/SafariHub
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrecommender.py
523 lines (423 loc) · 20.4 KB
/
recommender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
# Importing necessary libraries
import io
import json
import glob
import ast
import re
import string
import requests
from PIL import Image
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
# Tokenize texts into bigrams and count frequencies
import nltk
from nltk.util import bigrams
from collections import Counter
from textblob import TextBlob
from wordcloud import WordCloud
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score
from sklearn.metrics import mean_squared_error, mean_absolute_error
from sklearn.model_selection import train_test_split
from sklearn.neighbors import NearestNeighbors
from sklearn.preprocessing import StandardScaler
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.metrics import classification_report
from sklearn.svm import SVC
from sklearn.preprocessing import LabelEncoder
import joblib
# Filter warnings
import warnings
warnings.filterwarnings('ignore')
sns.set_style('darkgrid')
class DataSourcing:
def __init__(self):
self.df = None
def read_json_files(self, json_files, expected_columns):
# Reads multiple JSON files and concatenates them into a single DataFrame
dfs = []
for file in json_files:
with open(file, encoding='utf-8', errors='ignore') as f:
json_data = json.load(f)
df = pd.DataFrame([
{
col: item.get(col, np.nan) for col in expected_columns
}
for item in json_data
])
dfs.append(df)
self.df = pd.concat(dfs, ignore_index=True)
return self.df
def dataframe_details(self,df):
"""
Print details of the dataframe.
Parameters:
df (DataFrame): The dataframe to be analyzed.
Returns:
None
"""
print("============================")
print(f"DATAFRAME SHAPE: {df.shape}")
print("============================\n\n")
print("================")
print(f"DATAFRAME HEAD:")
print("================")
print(f"{df.head()}")
print("========================================================================\n\n")
print("=======================")
print(f"DATAFRAME COLUMNS INFO:")
print("=======================")
print(f"{df.info()}")
print("========================================================================\n\n")
print("==========================")
print(f"DATAFRAME KEY STATISTICS:")
print("==========================")
print(f"{df.describe().transpose()}")
print("========================================================================\n\n")
class DataPreprocessing(DataSourcing):
def __init__(self):
super().__init__()
def check_duplicates(self, data):
duplicates = data[data.duplicated()].shape[0]
print("There are {} duplicates in the data.".format(duplicates))
def check_null_values(self, data):
null_values = data.isnull().sum()
print(null_values)
print("====================================")
print("List of columns with missing values:")
print("====================================")
return null_values[null_values > 0].index.tolist()
# 1. Extract reviews and texts from reviewTags
def extract_reviews_and_texts(self, data):
data['reviewTags'] = data['reviewTags'].apply(ast.literal_eval)
data['texts'] = data['reviewTags'].apply(lambda x: [d['text'] for d in x])
data['reviews'] = data['reviewTags'].apply(lambda x: [d['reviews'] for d in x])
return data[['reviewTags', 'texts', 'reviews']].head()
# 2. Decode the priceLevel column
def decode_price_level(self, data):
def map_dollar_signs(dollar_signs):
mapping = {
"$$$$": "Luxury",
"$$$": "Premium",
"$$": "Standard",
"$": "Budget"
}
return mapping.get(dollar_signs, "Unknown")
data['priceLevel'] = data['priceLevel'].apply(map_dollar_signs)
# 3. Create new price columns (upperPrice & lowerPrice)
def create_price_columns(self, data, conversion_rate=145.0):
def convert_and_extract(x):
if isinstance(x, str):
if '$' in x:
lower_price = float(x.split(' - ')[0].replace('$', '').replace(',', '')) * conversion_rate
upper_price = float(x.split(' - ')[-1].replace('$', '').replace(',', '')) * conversion_rate
elif 'KES' in x:
lower_price = float(x.split(' - ')[0].replace('KES', '').replace(',', ''))
upper_price = float(x.split(' - ')[-1].replace('KES', '').replace(',', ''))
return lower_price, upper_price
return np.nan, np.nan
data[['lowerPrice', 'upperPrice']] = data['priceRange'].apply(
lambda x: pd.Series(convert_and_extract(x))
)
# 4. Create new column (weighted_sentiment) for Sentiment Analysis of Reviews
def create_sentiment_columns(self, data):
def calculate_weighted_sentiment(texts, reviews):
sentiments = [TextBlob(text).sentiment.polarity for text in texts]
weighted_sentiments = [sentiment * review for sentiment, review in zip(sentiments, reviews)]
total_reviews = sum(reviews)
weighted_average_sentiment = sum(weighted_sentiments) / total_reviews if total_reviews > 0 else 0
return weighted_average_sentiment
def bayesian_average(sentiment, num_reviews, C=10, m=0.03):
return (C * m + sentiment * num_reviews) / (C + num_reviews)
data['weighted_sentiment'] = data.apply(lambda row: calculate_weighted_sentiment(row['texts'], row['reviews']), axis=1)
data['adjusted_sentiment'] = data.apply(
lambda row: bayesian_average(
row['weighted_sentiment'],
row['numberOfReviews'],
C=10,
m=data['weighted_sentiment'].mean()
),
axis=1
)
# 5. Extract the location & province from locationString
def extract_location_and_province(self, data):
data['locationString'] = data['locationString'].apply(lambda x: np.nan if pd.isnull(x) or x.strip() == '' else x)
data['location'] = data['locationString'].str.split(',', n=1).str[0].str.strip()
data['province'] = data['locationString'].str.split(',').str[-1].str.strip()
return data[['location', 'province']].head()
# 6. Create a new value tour operator in the category column
def update_category_column(self, data):
keywords = ['safari', 'safaris', 'tour', 'tours', 'adventure',
'adventures', 'expeditions', 'expedition', 'travels',
'travel', 'travellers', 'escursioni']
hotel_keywords = ['cottages', 'spa', 'lodge', 'camp', 'club', 'hotel', 'resort']
def update_category(row):
name, current_category = row
name_lower = name.lower()
if any(hotel_keyword in name_lower for hotel_keyword in hotel_keywords):
return 'hotel'
if any(keyword in name_lower for keyword in keywords):
return 'tour operator'
return current_category
data['category'] = data[['name', 'category']].apply(update_category, axis=1)
return data['category'].value_counts()
def label_encode_columns(self, data, columns):
"""
Label encode specified columns in the dataframe.
Parameters:
- data: DataFrame containing the columns to be encoded.
- columns: List of column names to be label encoded.
Returns:
- data: DataFrame with the specified columns label encoded.
"""
label_encoder = LabelEncoder()
for column in columns:
data[column + '_encoded'] = label_encoder.fit_transform(data[column])
class DataAnalysis(DataPreprocessing, DataSourcing):
def __init__(self):
super().__init__()
# 1. Visual of the Destinations
def visualize_destinations(self, data):
image_urls = data['image'].tolist()
images = []
for url in image_urls[0:9]:
try:
response = requests.get(url)
if response.status_code == 200:
img = Image.open(io.BytesIO(response.content))
images.append(img)
else:
images.append(None)
except Exception as e:
print(f"Error fetching image from {url}: {e}")
images.append(None)
num_rows, num_cols = 3, 3
image_matrix = [[None for _ in range(num_cols)] for _ in range(num_rows)]
for idx, img in enumerate(images):
row, col = divmod(idx, num_cols)
if row < num_rows:
image_matrix[row][col] = img
fig, axs = plt.subplots(num_rows, num_cols, figsize=(10, 10))
for i in range(num_rows):
for j in range(num_cols):
if image_matrix[i][j] is not None:
axs[i, j].imshow(image_matrix[i][j])
axs[i, j].set_title(data.loc[i * num_cols + j, 'name'])
axs[i, j].axis('off')
plt.tight_layout()
plt.show()
# 2. Bigrams Visual
def visualize_bigrams(self, data):
def get_bigrams(texts, reviews):
bigram_counts = Counter()
for text, review in zip(texts, reviews):
tokens = nltk.word_tokenize(text)
bigrams_list = list(bigrams(tokens))
for bigram in bigrams_list:
bigram_counts[bigram] += review
return bigram_counts
data['bigram_counts'] = data.apply(lambda row: get_bigrams(row['texts'], row['reviews']), axis=1)
def flatten_bigrams(bigram_counts):
flattened_text = []
for bigram, count in bigram_counts.items():
flattened_text.extend([' '.join(bigram)] * count)
return ' '.join(flattened_text)
data['flattened_bigrams'] = data['bigram_counts'].apply(flatten_bigrams)
total_bigram_counts = Counter()
for counts in data['bigram_counts']:
total_bigram_counts.update(counts)
most_common_bigrams = total_bigram_counts.most_common(10)
bigram_labels, bigram_values = zip(*most_common_bigrams)
bigram_labels = [' '.join(bigram) for bigram in bigram_labels]
plot_data = pd.DataFrame({'Bigram': bigram_labels, 'Count': bigram_values})
plt.figure(figsize=(12, 8))
sns.barplot(x='Count', y='Bigram', data=plot_data, palette='magma')
plt.xlabel('Weighted Review Count')
plt.ylabel('Bigrams')
plt.title('Top 10 Bigrams by Review Count')
plt.show()
# 3. Most Frequently Used Words in Reviews
def frequent_words_in_reviews(self, data):
combined_texts = ' '.join(' '.join(texts) for texts in data['texts'])
wordcloud = WordCloud(width=800, height=400, background_color='white', colormap='magma').generate(combined_texts)
plt.figure(figsize=(12, 8))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title('Most Frequent Words in Reviews')
plt.show()
def preprocess(text):
words = text.lower().split()
words = [word for word in words if word.isalpha() and len(word) > 2]
return words
words = preprocess(combined_texts)
word_counts = Counter(words)
print("20 most common words:")
for word, count in word_counts.most_common(20):
print(f"{word}: {count}")
# 4. Most Common Review Tags for Highly-Rated Attractions
def common_review_tags(self, data):
high_rated = data[data['rating'] >= 4.5]
def extract_tags(tags_list):
return [tag['text'] for tag in tags_list]
all_tags = [tag for tags in high_rated['reviewTags'] for tag in extract_tags(tags)]
top_tags = Counter(all_tags).most_common(10)
plt.figure(figsize=(12, 6))
sns.barplot(y=[tag[0] for tag in top_tags], x=[tag[1] for tag in top_tags], palette='magma')
plt.title('Top 10 Review Tags for Highly-Rated Attractions (by Rating)')
plt.xlabel('Count')
plt.ylabel('Tags')
plt.tight_layout()
plt.show()
# 5. Most Frequently Used Words by Category
def frequent_words_by_category(self, data):
for category in data['category'].unique():
category_texts = ' '.join(' '.join(texts) for texts, cat in zip(data['texts'], data['category']) if cat == category)
wordcloud = WordCloud(width=800, height=400, background_color='white', colormap='magma').generate(category_texts)
plt.figure(figsize=(12, 8))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title(f'Word Cloud for Category: {category}')
plt.show()
# 6. Univariate Analysis
def plot_distribution(self, data, exclude_columns=[]):
for col in data.columns:
if col in exclude_columns:
continue
if data[col].dtype == 'object' or data[col].nunique() < 20:
sns.countplot(data=data, x=col, palette='magma')
plt.title(f"Distribution of '{col}'")
plt.xlabel(col)
plt.ylabel('Count')
plt.show()
elif pd.api.types.is_numeric_dtype(data[col]):
sns.histplot(data[col], kde=True, stat="density", palette='magma')
plt.title(f"Distribution of '{col}'")
plt.xlabel(col)
plt.ylabel('Density')
plt.show()
# 7. Correlation Analysis
def correlation(self, data, column=None, rank=None):
df_object = data.select_dtypes(include='object')
print(f'The following columns were dropped due to being object types:\n{df_object.columns.tolist()}')
data = data.drop(df_object, axis=1)
if rank:
df_corr = data.corr()[column] if column else data.corr()
df_corr = df_corr.drop(column) if column else df_corr
return df_corr.sort_values(by=column, ascending=False) if column else df_corr.sort_values(ascending=False)
# 8. Correlation Matrix
def correlation_matrix(self, data, numerical_columns):
corr_matrix = data[numerical_columns].corr()
plt.figure(figsize=(16, 16))
mask = np.zeros_like(corr_matrix, dtype=bool)
mask[np.triu_indices_from(mask)] = True
sns.heatmap(corr_matrix, mask=mask, cmap='magma', center=0, annot=True)
plt.title('Correlation Matrix of Numerical Features', fontsize=20)
plt.show()
# 9. Price Range Variation by Price Level
def price_range_variation(self, data):
price_level_range = data.groupby('priceLevel').agg({
'lowerPrice': 'mean',
'upperPrice': 'mean'
})
fig, ax = plt.subplots(figsize=(10, 6))
bar_width = 0.35
r1 = np.arange(len(price_level_range))
r2 = [x + bar_width for x in r1]
ax.bar(r1, price_level_range['lowerPrice'], color='b', width=bar_width, edgecolor='grey', label='Lower Price')
ax.bar(r2, price_level_range['upperPrice'], color='r', width=bar_width, edgecolor='grey', label='Upper Price')
ax.set_xlabel('Price Level', fontweight='bold')
ax.set_ylabel('Price', fontweight='bold')
ax.set_title('Average Lower and Upper Prices by Price Level', fontweight='bold')
ax.set_xticks([r + bar_width / 2 for r in range(len(price_level_range))])
ax.set_xticklabels(price_level_range.index)
ax.legend()
plt.show()
def analyze_photo_rating_reviews_corr(self, data):
"""
Analyze the correlation between the number of photos and rating or number of reviews.
Generates scatter plots with regression lines.
"""
# Calculate correlations
photo_rating_corr = data['photoCount'].corr(data['rating'])
photo_reviews_corr = data['photoCount'].corr(data['numberOfReviews'])
print(f"Correlation between photo count and rating: {photo_rating_corr:.2f}")
print(f"Correlation between photo count and number of reviews: {photo_reviews_corr:.2f}")
# Create subplots
fig, axes = plt.subplots(1, 2, figsize=(16, 6))
# Scatter plot with regression line for photo count vs rating
sns.regplot(x='photoCount', y='rating', data=data, ax=axes[0], scatter_kws={'s': 10}, line_kws={'color': 'red'})
axes[0].set_title(f'Photo Count vs Rating\nCorrelation: {photo_rating_corr:.2f}')
axes[0].set_xlabel('Photo Count')
axes[0].set_ylabel('Rating')
# Scatter plot with regression line for photo count vs number of reviews
sns.regplot(x='photoCount', y='numberOfReviews', data=data, ax=axes[1], scatter_kws={'s': 10}, line_kws={'color': 'red'})
axes[1].set_title(f'Photo Count vs Number of Reviews\nCorrelation: {photo_reviews_corr:.2f}')
axes[1].set_xlabel('Photo Count')
axes[1].set_ylabel('Number of Reviews')
# Adjust layout and show the plot
plt.tight_layout()
plt.show()
def analyze_province_distribution(self, data):
"""
Analyze the distribution of listings across different provinces.
Generates a bar plot showing the distribution.
"""
plt.figure(figsize=(14, 7))
sns.countplot(y='province', data=data, order=data['province'].value_counts().index, palette='magma')
plt.title('Distribution of Provinces', fontsize=16)
plt.xlabel('Count')
plt.ylabel('Province')
plt.show()
def analyze_sentiment_by_province(self, province_aggregates):
"""
Analyze how average sentiment varies across different provinces.
Generates a scatter plot showing average sentiment by province.
"""
plt.figure(figsize=(14, 7))
sns.scatterplot(y='Province', x='Average Weighted Sentiment', data=province_aggregates, size='Total Reviews', sizes=(50, 500), hue='Average Rating', palette='coolwarm', legend=False)
plt.title('Average Sentiment by Province', fontsize=16)
plt.xlabel('Average Weighted Sentiment')
plt.ylabel('Province')
plt.show()
def analyze_ratings_reviews_by_category(self, data):
"""
Analyze how average ratings and total number of reviews vary across different categories.
Generates bar plots showing the mean rating and total number of reviews by category.
"""
category_analysis = data.groupby('category').agg({
'rating': 'mean',
'numberOfReviews': 'sum'
}).reset_index()
category_analysis_sorted_by_rating = category_analysis.sort_values(by='rating', ascending=False)
category_analysis_sorted_by_reviews = category_analysis.sort_values(by='numberOfReviews', ascending=False)
plt.figure(figsize=(14, 8))
sns.set(style="whitegrid")
# Plot for mean rating by category
plt.subplot(2, 1, 1)
sns.barplot(x='rating', y='category', data=category_analysis_sorted_by_rating, palette='viridis')
plt.title('Mean Rating by Category')
plt.xlabel('Mean Rating')
plt.ylabel('Category')
# Plot for total number of reviews by category
plt.subplot(2, 1, 2)
sns.barplot(x='numberOfReviews', y='category', data=category_analysis_sorted_by_reviews, palette='magma')
plt.title('Total Number of Reviews by Category')
plt.xlabel('Total Number of Reviews')
plt.ylabel('Category')
plt.tight_layout()
plt.show()
def analyze_avg_price_by_category(self, data):
"""
Analyze the average price range for different categories.
Generates a bar plot showing the average price by category.
"""
avg_price_by_category = data.groupby('category')['averagePrice'].mean().sort_values(ascending=False)
plt.figure(figsize=(12, 6))
avg_price_by_category.plot(kind='bar')
plt.title('Average Price by Category')
plt.xticks()
plt.tight_layout()
plt.show()