-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathcifar10_tutorial.py
133 lines (117 loc) · 4.33 KB
/
cifar10_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from absl import app, flags
from easydict import EasyDict
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from cleverhans.torch.attacks.fast_gradient_method import fast_gradient_method
from cleverhans.torch.attacks.projected_gradient_descent import (
projected_gradient_descent,
)
FLAGS = flags.FLAGS
class CNN(torch.nn.Module):
"""Basic CNN architecture."""
def __init__(self, in_channels=1):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 64, 8, 1)
self.conv2 = nn.Conv2d(64, 128, 6, 2)
self.conv3 = nn.Conv2d(128, 128, 5, 2)
self.fc = nn.Linear(128 * 3 * 3, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = x.view(-1, 128 * 3 * 3)
x = self.fc(x)
return x
def ld_cifar10():
"""Load training and test data."""
train_transforms = torchvision.transforms.Compose(
[torchvision.transforms.ToTensor()]
)
test_transforms = torchvision.transforms.Compose(
[torchvision.transforms.ToTensor()]
)
train_dataset = torchvision.datasets.CIFAR10(
root="/tmp/data", train=True, transform=train_transforms, download=True
)
test_dataset = torchvision.datasets.CIFAR10(
root="/tmp/data", train=False, transform=test_transforms, download=True
)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=128, shuffle=True, num_workers=2
)
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=128, shuffle=False, num_workers=2
)
return EasyDict(train=train_loader, test=test_loader)
def main(_):
# Load training and test data
data = ld_cifar10()
# Instantiate model, loss, and optimizer for training
net = CNN(in_channels=3)
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
net = net.cuda()
loss_fn = torch.nn.CrossEntropyLoss(reduction="mean")
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)
# Train vanilla model
net.train()
for epoch in range(1, FLAGS.nb_epochs + 1):
train_loss = 0.0
for x, y in data.train:
x, y = x.to(device), y.to(device)
if FLAGS.adv_train:
# Replace clean example with adversarial example for adversarial training
x = projected_gradient_descent(net, x, FLAGS.eps, 0.01, 40, np.inf)
optimizer.zero_grad()
loss = loss_fn(net(x), y)
loss.backward()
optimizer.step()
train_loss += loss.item()
print(
"epoch: {}/{}, train loss: {:.3f}".format(
epoch, FLAGS.nb_epochs, train_loss
)
)
# Evaluate on clean and adversarial data
net.eval()
report = EasyDict(nb_test=0, correct=0, correct_fgm=0, correct_pgd=0)
for x, y in data.test:
x, y = x.to(device), y.to(device)
x_fgm = fast_gradient_method(net, x, FLAGS.eps, np.inf)
x_pgd = projected_gradient_descent(net, x, FLAGS.eps, 0.01, 40, np.inf)
_, y_pred = net(x).max(1) # model prediction on clean examples
_, y_pred_fgm = net(x_fgm).max(
1
) # model prediction on FGM adversarial examples
_, y_pred_pgd = net(x_pgd).max(
1
) # model prediction on PGD adversarial examples
report.nb_test += y.size(0)
report.correct += y_pred.eq(y).sum().item()
report.correct_fgm += y_pred_fgm.eq(y).sum().item()
report.correct_pgd += y_pred_pgd.eq(y).sum().item()
print(
"test acc on clean examples (%): {:.3f}".format(
report.correct / report.nb_test * 100.0
)
)
print(
"test acc on FGM adversarial examples (%): {:.3f}".format(
report.correct_fgm / report.nb_test * 100.0
)
)
print(
"test acc on PGD adversarial examples (%): {:.3f}".format(
report.correct_pgd / report.nb_test * 100.0
)
)
if __name__ == "__main__":
flags.DEFINE_integer("nb_epochs", 8, "Number of epochs.")
flags.DEFINE_float("eps", 0.3, "Total epsilon for FGM and PGD attacks.")
flags.DEFINE_bool(
"adv_train", False, "Use adversarial training (on PGD adversarial examples)."
)
app.run(main)