diff --git a/modulation/data/signal_generator.py b/modulation/data/signal_generator.py index 3197571..939c09e 100644 --- a/modulation/data/signal_generator.py +++ b/modulation/data/signal_generator.py @@ -26,7 +26,6 @@ def multifreq(x: numpy.ndarray) -> numpy.ndarray: def triangle(x: numpy.ndarray, section_length: float = 0.5) -> numpy.ndarray: - section0 = x < section_length section1 = (x >= section_length) & (x < 2 * section_length) section2 = (x >= 2 * section_length) & (x < 3 * section_length) @@ -40,7 +39,6 @@ def triangle(x: numpy.ndarray, section_length: float = 0.5) -> numpy.ndarray: def sawtooth(x: numpy.ndarray, section_length: float = 0.5) -> numpy.ndarray: - section0 = x < section_length section1 = (x >= section_length) & (x < 2 * section_length) section2 = (x >= 2 * section_length) & (x < 3 * section_length) diff --git a/tests/regression/reconstruction/torch_audio_demo.py b/tests/regression/reconstruction/torch_audio_demo.py index f000a73..276dbca 100644 --- a/tests/regression/reconstruction/torch_audio_demo.py +++ b/tests/regression/reconstruction/torch_audio_demo.py @@ -49,7 +49,6 @@ class TestFunctional(unittest.TestCase): waveform_train, sr_train = torchaudio.load(test_filepath) def test_torchscript_spectrogram(self): - tensor = torch.rand((1, 1000)) n_fft = 400 ws = 400 @@ -92,7 +91,6 @@ def test_torchscript_griffinlim(self): ) def test_batch_griffinlim(self): - torch.random.manual_seed(42) tensor = torch.rand((1, 201, 6)) @@ -423,7 +421,6 @@ def test_linearity_of_istft4(self): self._test_linearity_of_istft(data_size, kwargs4, atol=1e-5, rtol=1e-8) def test_batch_istft(self): - stft = torch.tensor( [ [[4.0, 0.0], [4.0, 0.0], [4.0, 0.0], [4.0, 0.0], [4.0, 0.0]], @@ -437,7 +434,6 @@ def test_batch_istft(self): def _test_create_fb( self, n_mels=40, sample_rate=22050, n_fft=2048, fmin=0.0, fmax=8000.0 ): - librosa_fb = librosa.filters.mel( sr=sample_rate, n_fft=n_fft, @@ -556,7 +552,6 @@ def test_pitch(self): self._test_batch(F.detect_pitch_frequency, waveform, sample_rate) def _test_batch_shape(self, functional, tensor, *args, **kwargs): - kwargs_compare = {} if "atol" in kwargs: atol = kwargs["atol"] @@ -586,7 +581,6 @@ def _test_batch_shape(self, functional, tensor, *args, **kwargs): return tensors, expected def _test_batch(self, functional, tensor, *args, **kwargs): - tensors, expected = self._test_batch_shape(functional, tensor, *args, **kwargs) kwargs_compare = {} @@ -612,7 +606,6 @@ def _test_batch(self, functional, tensor, *args, **kwargs): computed = functional(tensors.clone(), *args, **kwargs) def test_torchscript_create_fb_matrix(self): - n_stft = 100 f_min = 0.0 f_max = 20.0 @@ -635,7 +628,6 @@ def test_torchscript_amplitude_to_DB(self): ) def test_torchscript_DB_to_amplitude(self): - x = torch.rand((1, 100)) ref = 1.0 power = 1.0 @@ -685,7 +677,6 @@ def test_DB_to_amplitude(self): self.assertTrue(torch.allclose(spec, x2, atol=5e-5)) def test_torchscript_create_dct(self): - n_mfcc = 40 n_mels = 128 norm = "ortho" @@ -693,28 +684,24 @@ def test_torchscript_create_dct(self): _test_torchscript_functional(F.create_dct, n_mfcc, n_mels, norm) def test_torchscript_mu_law_encoding(self): - tensor = torch.rand((1, 10)) qc = 256 _test_torchscript_functional(F.mu_law_encoding, tensor, qc) def test_torchscript_mu_law_decoding(self): - tensor = torch.rand((1, 10)) qc = 256 _test_torchscript_functional(F.mu_law_decoding, tensor, qc) def test_torchscript_complex_norm(self): - complex_tensor = torch.randn(1, 2, 1025, 400, 2) power = 2 _test_torchscript_functional(F.complex_norm, complex_tensor, power) def test_mask_along_axis(self): - specgram = torch.randn(2, 1025, 400) mask_param = 100 mask_value = 30.0 @@ -725,7 +712,6 @@ def test_mask_along_axis(self): ) def test_mask_along_axis_iid(self): - specgrams = torch.randn(4, 2, 1025, 400) mask_param = 100 mask_value = 30.0