forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 20
/
fast_math.h
1067 lines (898 loc) · 28.2 KB
/
fast_math.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#if defined(__CUDACC_RTC__)
#include <cuda/std/cstdint>
#else
#include <cstdint>
#include <cmath>
#include <type_traits>
#endif
#include "cutlass/cutlass.h"
#include "cutlass/array.h"
#include "cutlass/uint128.h"
#include "cutlass/coord.h"
#include "cutlass/half.h"
/**
* \file
* \brief Math utilities
*/
namespace cutlass {
/////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T>
CUTLASS_HOST_DEVICE void swap(T &lhs, T &rhs) {
T tmp = lhs;
lhs = rhs;
rhs = tmp;
}
/******************************************************************************
* Static math utilities
******************************************************************************/
/// Mixed precision dot product
template <typename Index, typename LongIndex, int N>
CUTLASS_HOST_DEVICE LongIndex dot(
Coord<N, Index> const &coord,
Coord<N, LongIndex> const &stride,
LongIndex acc = LongIndex()) {
CUTLASS_PRAGMA_UNROLL
for (int n = 0; n < N; ++n) {
acc += LongIndex(coord[n]) * stride[n];
}
return acc;
}
/**
* Statically determine if N is a power-of-two
*/
template <int N>
struct is_pow2 {
static bool const value = ((N & (N - 1)) == 0);
};
/**
* Statically determine log2(N), rounded down
*/
template <int N, int CurrentVal = N, int Count = 0>
struct log2_down {
/// Static logarithm value
enum { value = log2_down<N, (CurrentVal >> 1), Count + 1>::value };
};
// Base case
template <int N, int Count>
struct log2_down<N, 1, Count> {
enum { value = Count };
};
/**
* Statically determine log2(N), rounded up
*/
template <int N, int CurrentVal = N, int Count = 0>
struct log2_up {
/// Static logarithm value
enum { value = log2_up<N, (CurrentVal >> 1), Count + 1>::value };
};
// Base case
template <int N, int Count>
struct log2_up<N, 1, Count> {
enum { value = ((1 << Count) < N) ? Count + 1 : Count };
};
/**
* Statically estimate sqrt(N) to the nearest power-of-two
*/
template <int N>
struct sqrt_est {
enum { value = 1 << (log2_up<N>::value / 2) };
};
/**
* For performing a constant-division with a compile-time assertion that the
* Divisor evenly-divides the Dividend.
*/
template <int Dividend, int Divisor>
struct divide_assert {
enum { value = Dividend / Divisor };
static_assert((Dividend % Divisor == 0), "Not an even multiple");
};
/******************************************************************************
* Rounding
******************************************************************************/
/**
* Round dividend up to the nearest multiple of divisor
*/
template <typename dividend_t, typename divisor_t>
CUTLASS_HOST_DEVICE
CUTLASS_CONSTEXPR_IF_CXX17
dividend_t round_nearest(dividend_t dividend, divisor_t divisor) {
return ((dividend + divisor - 1) / divisor) * divisor;
}
template <typename value_t>
CUTLASS_HOST_DEVICE
CUTLASS_CONSTEXPR_IF_CXX17
value_t abs_for_integer(value_t a) {
return ((a > 0) ? a : -a);
}
/**
* Greatest common divisor
*/
template <typename value_t>
CUTLASS_HOST_DEVICE
CUTLASS_CONSTEXPR_IF_CXX17
value_t gcd(value_t a, value_t b) {
for (;;) {
if (a == 0) return cutlass::abs_for_integer(b);
b %= a;
if (b == 0) return cutlass::abs_for_integer(a);
a %= b;
}
}
/**
* Least common multiple
*/
template <typename value_t>
CUTLASS_HOST_DEVICE
CUTLASS_CONSTEXPR_IF_CXX17
value_t lcm(value_t a, value_t b) {
value_t temp = cutlass::gcd(a, b);
return (temp != 0) ? value_t(cutlass::abs_for_integer(a) / temp * cutlass::abs_for_integer(b)) : value_t{};
}
/**
* Greatest common divisor
*/
template <typename value_t>
CUTLASS_HOST_DEVICE
CUTLASS_CONSTEXPR_IF_CXX17
value_t gcd_cxx11(value_t a, value_t b) {
return (a == 0 || b == 0) ? cutlass::abs_for_integer(a | b) : cutlass::gcd_cxx11(b, a % b);
}
/**
* Least common multiple
*/
template <typename value_t>
CUTLASS_HOST_DEVICE
CUTLASS_CONSTEXPR_IF_CXX17
value_t lcm_cxx11(value_t a, value_t b) {
return cutlass::gcd_cxx11(a, b) ? (cutlass::abs_for_integer(a) / cutlass::gcd_cxx11(a, b) *
cutlass::abs_for_integer(b))
: value_t{};
}
/// Returns the smallest value in the half-open range [a, a+b) that is a multiple of b
CUTLASS_HOST_DEVICE
CUTLASS_CONSTEXPR_IF_CXX17
int round_up(int a, int b) {
return ((a + b - 1) / b) * b;
}
/// Returns the ceiling of (a / b)
CUTLASS_HOST_DEVICE
CUTLASS_CONSTEXPR_IF_CXX17
int ceil_div(int a, int b) {
return (a + b - 1) / b;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
/**
* log2 computation, what's the
* difference between the below codes and
* log2_up/down codes?
*/
template <typename value_t>
CUTLASS_HOST_DEVICE
CUTLASS_CONSTEXPR_IF_CXX17
value_t clz(value_t x) {
for (int i = 31; i >= 0; --i) {
if ((1 << i) & x)
return value_t(31 - i);
}
return value_t(32);
}
template <typename value_t>
CUTLASS_HOST_DEVICE
CUTLASS_CONSTEXPR_IF_CXX17
value_t find_log2(value_t x) {
int a = int(31 - clz(x));
a += (x & (x - 1)) != 0; // Round up, add 1 if not a power of 2.
return a;
}
/**
* Find divisor, using find_log2
*/
CUTLASS_HOST_DEVICE
CUTLASS_CONSTEXPR_IF_CXX17
void find_divisor(unsigned int& mul, unsigned int& shr, unsigned int denom) {
if (denom == 1) {
mul = 0;
shr = 0;
} else {
unsigned int p = 31 + find_log2(denom);
unsigned m = unsigned(((1ull << p) + unsigned(denom) - 1) / unsigned(denom));
mul = m;
shr = p - 32;
}
}
/**
* Find quotient and remainder using device-side intrinsics
*/
CUTLASS_HOST_DEVICE
CUTLASS_CONSTEXPR_IF_CXX17
void fast_divmod(int& quo, int& rem, int src, int div, unsigned int mul, unsigned int shr) {
#if defined(__CUDA_ARCH__)
// Use IMUL.HI if div != 1, else simply copy the source.
quo = (div != 1) ? __umulhi(src, mul) >> shr : src;
#else
quo = int((div != 1) ? int(((int64_t)src * mul) >> 32) >> shr : src);
#endif
// The remainder.
rem = src - (quo * div);
}
// For long int input
CUTLASS_HOST_DEVICE
CUTLASS_CONSTEXPR_IF_CXX17
void fast_divmod(int& quo, int64_t& rem, int64_t src, int div, unsigned int mul, unsigned int shr) {
#if defined(__CUDA_ARCH__)
// Use IMUL.HI if div != 1, else simply copy the source.
quo = (div != 1) ? __umulhi(src, mul) >> shr : src;
#else
quo = int((div != 1) ? ((src * mul) >> 32) >> shr : src);
#endif
// The remainder.
rem = src - (quo * div);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Object to encapsulate the fast division+modulus operation.
///
/// This object precomputes two values used to accelerate the computation and is best used
/// when the divisor is a grid-invariant. In this case, it may be computed in host code and
/// marshalled along other kernel arguments using the 'Params' pattern.
///
/// Example:
///
///
/// int quotient, remainder, dividend, divisor;
///
/// FastDivmod divmod(divisor);
///
/// divmod(quotient, remainder, dividend);
///
/// // quotient = (dividend / divisor)
/// // remainder = (dividend % divisor)
///
struct FastDivmod {
using value_div_type = int;
using value_mod_type = int64_t;
int32_t divisor = 1;
uint32_t multiplier = 0u;
uint32_t shift_right = 0u;
// Find quotient and remainder using device-side intrinsics
CUTLASS_HOST_DEVICE
void fast_divmod(int& quotient, int& remainder, int dividend) const {
#if defined(__CUDA_ARCH__)
// Use IMUL.HI if divisor != 1, else simply copy the source.
quotient = (divisor != 1) ? __umulhi(dividend, multiplier) >> shift_right : dividend;
#else
quotient = int((divisor != 1) ? int(((int64_t)dividend * multiplier) >> 32) >> shift_right : dividend);
#endif
// The remainder.
remainder = dividend - (quotient * divisor);
}
/// For long int input
CUTLASS_HOST_DEVICE
void fast_divmod(int& quotient, int64_t& remainder, int64_t dividend) const {
#if defined(__CUDA_ARCH__)
// Use IMUL.HI if divisor != 1, else simply copy the source.
quotient = (divisor != 1) ? __umulhi(dividend, multiplier) >> shift_right : dividend;
#else
quotient = int((divisor != 1) ? ((dividend * multiplier) >> 32) >> shift_right : dividend);
#endif
// The remainder.
remainder = dividend - (quotient * divisor);
}
/// Construct the FastDivmod object, in host code ideally.
///
/// This precomputes some values based on the divisor and is computationally expensive.
constexpr FastDivmod() = default;
CUTLASS_HOST_DEVICE
FastDivmod(int divisor_): divisor(divisor_) {
assert(divisor_ >= 0);
if (divisor != 1) {
unsigned int p = 31 + find_log2(divisor);
unsigned m = unsigned(((1ull << p) + unsigned(divisor) - 1) / unsigned(divisor));
multiplier = m;
shift_right = p - 32;
}
}
/// Computes integer division and modulus using precomputed values. This is computationally
/// inexpensive.
CUTLASS_HOST_DEVICE
void operator()(int "ient, int &remainder, int dividend) const {
fast_divmod(quotient, remainder, dividend);
}
/// Computes integer division using precomputed values. This is computationally
/// inexpensive.
CUTLASS_HOST_DEVICE
int div(int dividend) const {
int quotient, remainder;
fast_divmod(quotient, remainder, dividend);
return quotient;
}
/// Alias for `div` to match the interface of FastDivmodU64
CUTLASS_HOST_DEVICE
int divide(int dividend) const {
return div(dividend);
}
/// Computes integer division and modulus using precomputed values. This is computationally
/// inexpensive.
///
/// Simply returns the quotient
CUTLASS_HOST_DEVICE
int divmod(int &remainder, int dividend) const {
int quotient;
fast_divmod(quotient, remainder, dividend);
return quotient;
}
/// Computes integer division and modulus using precomputed values. This is computationally
/// inexpensive.
CUTLASS_HOST_DEVICE
void operator()(int "ient, int64_t &remainder, int64_t dividend) const {
fast_divmod(quotient, remainder, dividend);
}
/// Computes integer division and modulus using precomputed values. This is computationally
/// inexpensive.
CUTLASS_HOST_DEVICE
int divmod(int64_t &remainder, int64_t dividend) const {
int quotient;
fast_divmod(quotient, remainder, dividend);
return quotient;
}
/// Returns the divisor when cast to integer
CUTLASS_HOST_DEVICE
operator int() const { return divisor; }
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Object to encapsulate the fast division+modulus operation for 64b integer division.
///
/// This object precomputes two values used to accelerate the computation and is best used
/// when the divisor is a grid-invariant. In this case, it may be computed in host code and
/// marshalled along other kernel arguments using the 'Params' pattern.
///
/// Example:
///
///
/// uint64_t quotient, remainder, dividend, divisor;
///
/// FastDivmodU64 divmod(divisor);
///
/// divmod(quotient, remainder, dividend);
///
/// // quotient = (dividend / divisor)
/// // remainder = (dividend % divisor)
///
struct FastDivmodU64 {
uint64_t divisor;
uint64_t multiplier;
unsigned int shift_right;
unsigned int round_up;
//
// Static methods
//
/// Computes b, where 2^b is the greatest power of two that is less than or equal to x
CUTLASS_HOST_DEVICE
static uint32_t integer_log2(uint64_t x) {
uint32_t n = 0;
while (x >>= 1) {
++n;
}
return n;
}
/// Default ctor
CUTLASS_HOST_DEVICE
FastDivmodU64(): divisor(0), multiplier(0), shift_right(0), round_up(0) { }
/// Construct the FastDivmod object, in host code ideally.
///
/// This precomputes some values based on the divisor and is computationally expensive.
CUTLASS_HOST_DEVICE
FastDivmodU64(uint64_t divisor_): divisor(divisor_), multiplier(1), shift_right(0), round_up(0) {
if (divisor) {
shift_right = integer_log2(divisor);
if ((divisor & (divisor - 1)) == 0) {
multiplier = 0;
}
else {
uint64_t power_of_two = (uint64_t(1) << shift_right);
uint64_t multiplier_lo = uint128_t(0, power_of_two) / divisor;
multiplier = uint128_t(power_of_two, power_of_two) / divisor;
round_up = (multiplier_lo == multiplier ? 1 : 0);
}
}
}
/// Returns the quotient of floor(dividend / divisor)
CUTLASS_HOST_DEVICE
uint64_t divide(uint64_t dividend) const {
uint64_t quotient = 0;
#ifdef __CUDA_ARCH__
uint64_t x = dividend;
if (multiplier) {
x = __umul64hi(dividend + round_up, multiplier);
}
quotient = (x >> shift_right);
#else
quotient = dividend / divisor;
#endif
return quotient;
}
/// Computes the remainder given a computed quotient and dividend
CUTLASS_HOST_DEVICE
uint64_t modulus(uint64_t quotient, uint64_t dividend) const {
return dividend - quotient * divisor;
}
/// Returns the quotient of floor(dividend / divisor) and computes the remainder
CUTLASS_HOST_DEVICE
uint64_t divmod(uint64_t &remainder, uint64_t dividend) const {
uint64_t quotient = divide(dividend);
remainder = modulus(quotient, dividend);
return quotient;
}
/// Computes integer division and modulus using precomputed values. This is computationally
/// inexpensive.
CUTLASS_HOST_DEVICE
void operator()(uint64_t "ient, uint64_t &remainder, uint64_t dividend) const {
quotient = divmod(remainder, dividend);
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Object to encapsulate the fast division+modulus operation for 64b integer division
/// in which the divisor is a power of two.
struct FastDivmodU64Pow2 {
uint64_t divisor;
unsigned int shift_right;
/// Default ctor
CUTLASS_HOST_DEVICE
FastDivmodU64Pow2(): divisor(0), shift_right(0) { }
/// Construct the FastDivmod object, in host code ideally.
///
/// This precomputes some values based on the divisor and is computationally expensive.
CUTLASS_HOST_DEVICE
FastDivmodU64Pow2(uint64_t divisor_): divisor(divisor_), shift_right(FastDivmodU64::integer_log2(divisor_)) { }
/// Returns the quotient of floor(dividend / divisor)
CUTLASS_HOST_DEVICE
uint64_t divide(uint64_t dividend) const {
return dividend >> shift_right;
}
/// Computes the remainder given a computed quotient and dividend
CUTLASS_HOST_DEVICE
uint64_t modulus(uint64_t dividend) const {
// See https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#division-modulo-operations
return dividend & (divisor - 1);
}
/// Returns the quotient of floor(dividend / divisor) and computes the remainder
CUTLASS_HOST_DEVICE
uint64_t divmod(uint64_t &remainder, uint64_t dividend) const {
uint64_t quotient = divide(dividend);
remainder = modulus(dividend);
return quotient;
}
/// Computes integer division and modulus using precomputed values. This is computationally
/// inexpensive.
CUTLASS_HOST_DEVICE
void operator()(uint64_t "ient, uint64_t &remainder, uint64_t dividend) const {
quotient = divmod(remainder, dividend);
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Computes the coordinate decomposition from a linear index (64-bit linear index => coord<int32_t>)
///
/// This decomposition is accelerated by the FastDivmodU64 object. It is assumed that
/// a coordinate of <Rank> indices can be decomposed by <Rank - 1> div/mod operations.
/// Note, is assumed that element divmod[0] divides by extent[1].
///
/// For example, assume 4-D coordinate (n, p, q, c) is mapped to a linear index `npqc`. This
/// can be decomposed via three divide and modulus operations:
///
/// c = npqc % C; | divmod[2] = FastDivmodU64(C)
/// npq = npqc / C; | coord[3] = c
///
/// q = npq % Q; | divmod[1] = FastDivmodU64(Q)
/// np = npq / Q; | coord[2] = q
///
/// p = np % P; | divmod[0] = FastDivmodU64(P)
/// n = np / P; | coord[1] = p
///
/// | coord[0] = n
///
template <int Rank>
CUTLASS_HOST_DEVICE Coord<Rank> CoordinateDecomposition(
uint64_t linear_idx, ///< Linear index to decompose
FastDivmodU64 const *divmod) { ///< Pointer to array of Rank-1 FastDivmodU64 objects
static_assert(Rank > 0, "CoordinateDecomposition requires Rank=1 or greater.");
Coord<Rank> coord;
CUTLASS_PRAGMA_UNROLL
for (int i = Rank; i > 1; --i) {
uint64_t remainder;
linear_idx = divmod[i - 2].divmod(remainder, linear_idx);
coord[i - 1] = int(remainder);
}
coord[0] = int(linear_idx);
return coord;
}
/// Computes the coordinate decomposition from a linear index (32-bit linear index => coord<int32_t>)
template <int Rank>
CUTLASS_HOST_DEVICE Coord<Rank> CoordinateDecomposition(
int linear_idx, ///< Linear index to decompose
FastDivmod const *divmod) { ///< Pointer to array of Rank-1 FastDivmodU64 objects
static_assert(Rank > 0, "CoordinateDecomposition requires Rank=1 or greater.");
Coord<Rank> coord;
CUTLASS_PRAGMA_UNROLL
for (int i = Rank; i > 1; --i) {
int remainder;
linear_idx = divmod[i - 2].divmod(remainder, linear_idx);
coord[i - 1] = int(remainder);
}
coord[0] = int(linear_idx);
return coord;
}
template <int Rank>
CUTLASS_HOST_DEVICE Coord<Rank> CoordinateDecompositionLittleEndian(
uint64_t linear_idx, ///< Linear index to decompose
FastDivmodU64 const *divmod) { ///< Pointer to array of Rank-1 FastDivmodU64 objects
static_assert(Rank > 0, "CoordinateDecomposition requires Rank=1 or greater.");
Coord<Rank> coord;
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < Rank - 1; ++i) {
uint64_t remainder;
linear_idx = divmod[i].divmod(remainder, linear_idx);
coord[i] = int(remainder);
}
coord[Rank - 1] = int(linear_idx);
return coord;
}
/// Computes the coordinate decomposition from a linear index (32-bit linear index => coord<int32_t>)
template <int Rank>
CUTLASS_HOST_DEVICE Coord<Rank> CoordinateDecompositionLittleEndian(
int linear_idx, ///< Linear index to decompose
FastDivmod const *divmod) { ///< Pointer to array of Rank-1 FastDivmodU64 objects
static_assert(Rank > 0, "CoordinateDecomposition requires Rank=1 or greater.");
Coord<Rank> coord;
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < Rank - 1; ++i) {
int remainder;
linear_idx = divmod[i].divmod(remainder, linear_idx);
coord[i] = int(remainder);
}
coord[Rank - 1] = int(linear_idx);
return coord;
}
/// Safely computes the offset of a linear index in bytes for all types
template <typename Element>
CUTLASS_HOST_DEVICE int64_t OffsetBytes(int64_t index) {
static_assert(
(sizeof_bits<Element>::value >= 8 && !(sizeof_bits<Element>::value % 8)) ||
(sizeof_bits<Element>::value < 8 && !(8 % sizeof_bits<Element>::value)),
"Size of numeric type in bits must either be divisible by 8 bits, or 8 bits must be divisible by the size.");
if (sizeof_bits<Element>::value >= 8) {
return index * (sizeof_bits<Element>::value / 8);
}
else {
int const kElementsPerByte = ((8 / sizeof_bits<Element>::value) + ((sizeof_bits<Element>::value >= 8) ? 1 : 0));
return index / kElementsPerByte;
}
}
CUTLASS_HOST_DEVICE int64_t OffsetBytes(int64_t index, int64_t element_sizeof_bits) {
if (element_sizeof_bits >= 8) {
return index * (element_sizeof_bits / 8);
}
else {
int64_t const kElementsPerByte = ((8 / element_sizeof_bits) + ((element_sizeof_bits >= 8) ? 1 : 0));
return index / kElementsPerByte;
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
// Min/Max
/////////////////////////////////////////////////////////////////////////////////////////////////
template <int A, int B>
struct Min {
static int const kValue = (A < B) ? A : B;
};
template <int A, int B>
struct Max {
static int const kValue = (A > B) ? A : B;
};
CUTLASS_HOST_DEVICE
CUTLASS_CONSTEXPR_IF_CXX17 int const_min(int a, int b) {
return (b < a ? b : a);
}
CUTLASS_HOST_DEVICE
CUTLASS_CONSTEXPR_IF_CXX17 int const_max(int a, int b) {
return (b > a ? b : a);
}
template <typename T>
CUTLASS_HOST_DEVICE
T fast_min(T a, T b) {
return (b < a ? b : a);
}
template <>
CUTLASS_HOST_DEVICE
float fast_min(float a, float b) {
return fminf(a, b);
}
template <typename T>
CUTLASS_HOST_DEVICE
T fast_max(T a, T b) {
return (a < b ? b : a);
}
template <>
CUTLASS_HOST_DEVICE
float fast_max(float a, float b) {
return fmaxf(a, b);
}
CUTLASS_HOST_DEVICE
float fast_cos(float theta) {
#if defined(__CUDA_ARCH__)
return ::cosf(theta);
#else
return std::cos(theta);
#endif
}
CUTLASS_HOST_DEVICE
double fast_cos(double theta) {
#if defined(__CUDA_ARCH__)
return ::cos(theta);
#else
return std::cos(theta);
#endif
}
CUTLASS_HOST_DEVICE
float fast_sin(float theta) {
#if defined(__CUDA_ARCH__)
return ::sinf(theta);
#else
return std::sin(theta);
#endif
}
CUTLASS_HOST_DEVICE
double fast_sin(double theta) {
#if defined(__CUDA_ARCH__)
return ::sin(theta);
#else
return std::sin(theta);
#endif
}
CUTLASS_HOST_DEVICE
float fast_acos(float theta) {
#if defined(__CUDA_ARCH__)
return ::acosf(theta);
#else
return std::acos(theta);
#endif
}
CUTLASS_HOST_DEVICE
double fast_acos(double theta) {
#if defined(__CUDA_ARCH__)
return ::acos(theta);
#else
return std::acos(theta);
#endif
}
CUTLASS_HOST_DEVICE
float fast_asin(float theta) {
#if defined(__CUDA_ARCH__)
return ::asinf(theta);
#else
return std::asin(theta);
#endif
}
CUTLASS_HOST_DEVICE
double fast_asin(double theta) {
#if defined(__CUDA_ARCH__)
return ::asin(theta);
#else
return std::asin(theta);
#endif
}
CUTLASS_HOST_DEVICE
float fast_sqrt(float theta) {
#if defined(__CUDA_ARCH__)
return ::sqrtf(theta);
#else
return std::sqrt(theta);
#endif
}
CUTLASS_HOST_DEVICE
double fast_sqrt(double theta) {
#if defined(__CUDA_ARCH__)
return ::sqrt(theta);
#else
return std::sqrt(theta);
#endif
}
CUTLASS_HOST_DEVICE
float fast_exp(float x) {
#if defined(__CUDA_ARCH__)
return ::expf(x);
#else
return std::exp(x);
#endif
}
CUTLASS_HOST_DEVICE
double fast_exp(double x) {
#if defined(__CUDA_ARCH__)
return ::exp(x);
#else
return std::exp(x);
#endif
}
CUTLASS_HOST_DEVICE
half_t fast_exp(half_t x) {
#if defined(__CUDA_ARCH__) && (__CUDACC_VER_MAJOR__ >= 10) && (__CUDA_ARCH__ >= 750)
return (half_t)(::hexp(x.to_half()));
#else
return (half_t)(fast_exp(float(x)));
#endif
}
CUTLASS_HOST_DEVICE
float fast_log(float x) {
#if defined(__CUDA_ARCH__)
return ::logf(x);
#else
return std::log(x);
#endif
}
CUTLASS_HOST_DEVICE
double fast_log(double x) {
#if defined(__CUDA_ARCH__)
return ::log(x);
#else
return std::log(x);
#endif
}
CUTLASS_HOST_DEVICE
float fast_tanh(float x) {
#if defined(__CUDA_ARCH__)
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDA_ARCH__ >= 750)
float y;
asm volatile ( "tanh.approx.f32 %0, %1; " : "=f"(y) : "f"(x));
return y;
#else
return ::tanhf(x);
#endif
#else
return std::tanh(x);
#endif
}
CUTLASS_HOST_DEVICE
double fast_tanh(double x) {
#if defined(__CUDA_ARCH__)
return ::tanh(x);
#else
return std::tanh(x);
#endif
}
CUTLASS_HOST_DEVICE
half_t fast_tanh(half_t x) {
#if defined(__CUDA_ARCH__) && (__CUDACC_VER_MAJOR__ >= 11) && (__CUDA_ARCH__ >= 750)
asm volatile ( "tanh.approx.f16 %0, %1;" : "=h"(x.raw()) : "h"(x.raw()));
return x;
#else
return half_t(fast_tanh(float(x)));
#endif
}
/////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T>
struct fast_exp_op {
CUTLASS_HOST_DEVICE
T operator()(T const &rhs) const {
return fast_exp(rhs);
}
};
#if defined(__CUDA_ARCH__) && (__CUDACC_VER_MAJOR__ >= 10) && (__CUDA_ARCH__ >= 750)
template <int N>
struct fast_exp_op<Array<half_t, N>> {
CUTLASS_DEVICE
Array<half_t, N> operator()(Array<half_t, N> const &rhs) const {
Array<half_t, N> result;
// use x2 specialization
__half2 const *in = reinterpret_cast<__half2 const *>(&rhs);
__half2 *out = reinterpret_cast<__half2 *>(&result);
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < N / 2; ++i) {
out[i] = ::h2exp(in[i]);
}
// residual
if (N % 2) {
half_t last = rhs[N - 1];
result[N - 1] = half_t(::hexp(last.to_half()));
}
return result;
}
};
#endif // #if defined(__CUDA_ARCH__)
template <typename T, int N>
struct fast_exp_op<Array<T, N>> {
CUTLASS_HOST_DEVICE
Array<T, N> operator()(Array<T, N> const &rhs) const {
fast_exp_op<T> fast_op;
Array<T, N> y;
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < N; ++i) {
y[i] = fast_op(rhs[i]);
}
return y;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T>
struct fast_tanh_op {
CUTLASS_HOST_DEVICE
T operator()(T const &rhs) const {
return fast_tanh(rhs);