-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLSTM.py
138 lines (121 loc) · 4.95 KB
/
LSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from process_text import get_processed_text
from generators import GeneralGenerator
from keras.callbacks import LambdaCallback
from keras.models import Sequential
from keras.layers import Dense, Activation, Embedding
from keras.layers import LSTM
from keras.optimizers import RMSprop
from keras.models import load_model
from math import ceil
import numpy as np
import random
import sys
def sample(preds, temperature=1.0):
# helper function to sample an index from a probability array
preds = np.asarray(preds).astype('float64')
preds = np.log(preds) / temperature
exp_preds = np.exp(preds)
preds = exp_preds / np.sum(exp_preds)
probas = np.random.multinomial(1, preds, 1)
return np.argmax(probas)
def on_epoch_end(epoch, logs):
# Function invoked at end of each epoch. Prints generated text.
print()
print('----- Generating text after Epoch: %d' % epoch)
text = string_tokens
start_index = random.randint(0, len(text) - max_len - 1)
for diversity in [0.2, 0.5, 1.0, 1.2]:
print('----- diversity:', diversity)
sentence = text[start_index: start_index + max_len]
generated = sentence.copy()
print('----- Generating with seed: "' + ''.join(sentence) + '"')
#sys.stdout.write(''.join(generated))
for i in range(100):
x_pred = np.zeros((1, max_len))
for t, token in enumerate(sentence):
x_pred[0, t] = token_to_index[token]
preds = model.predict(x_pred, verbose=0)[0]
next_index = sample(preds, diversity)
next_token = index_to_token[next_index+1] # dict starting at 1
generated += [next_token]
sentence = sentence[1:] + [next_token]
sys.stdout.write(next_token)
sys.stdout.flush()
print()
# get processed text
print('Process text...')
string_tokens = get_processed_text('data/horoscopo_test_overfitting.txt')
print('tokens length:', len(string_tokens))
# crear diccionario tokens-int
print('Vectorization...')
string_voc = set(string_tokens)
token_to_index = dict((t, i) for i, t in enumerate(string_voc, 1))
index_to_token = dict((token_to_index[t], t) for t in string_voc)
# translate string corpus to integers corpus
ind_corpus = [token_to_index[token] for token in string_tokens]
# testing proposes: test/train split
len_train = int(len(ind_corpus)*0.8)
ind_corpus_train = ind_corpus[0:len_train]
ind_corpus_test = ind_corpus[len_train:]
voc = set(ind_corpus)
print('voc size:', len(voc))
# build the model: a single LSTM
max_len = 100
embedding_dim = 300
print('Build model...')
model = Sequential()
model.add(Embedding(input_dim=len(voc)+1, output_dim=embedding_dim, input_length=max_len, mask_zero=True))
model.add(LSTM(128))
model.add(Dense(len(voc)))
model.add(Activation('softmax'))
optimizer = RMSprop(lr=0.01)
model.compile(loss='categorical_crossentropy', optimizer=optimizer)
# train model
batch_size = 128
epochs = 60
train_gen = GeneralGenerator(batch_size, ind_corpus_train, voc, max_len)
#val_gen = GeneralGenerator(batch_size, ind_val_tokens, voc, max_len)
print_callback = LambdaCallback(on_epoch_end=on_epoch_end)
model_output = model.fit_generator(
train_gen.generator(),
train_gen.steps_per_epoch,
epochs=epochs#,
#callbacks=[print_callback]
)
#print('Saving last model:', 'model_test_overfitting.h5')
#model.save('model_test_overfitting.h5')
###########################
# Quick test of correctness:
# select the 'horoscopo_test_overfitting.txt'
# set True the test
###########################
if True:
# Create X, Y test
print("---- Evaluation")
ind_corpus_test = ind_corpus_train # using test_data = train_data to check correctness -> we should have ~1 perplexity
num_test = ceil(len(ind_corpus_test)/(max_len+1))
X_test = np.zeros((num_test, max_len), dtype = np.int32)
Y_test = np.zeros((num_test, len(voc)), dtype = np.bool)
test_count = 0
for i in np.arange(0, len(ind_corpus_test), max_len+1):
j = i+max_len if i+max_len < len(ind_corpus_test) else len(ind_corpus_test)-1
pad_length = max_len-(j-i)
for k, ind_token in enumerate([0]*pad_length + ind_corpus_test[i:j]):
X_test[test_count, k] = ind_token
Y_test[test_count, ind_corpus_test[j]-1] = 1
test_count += 1
loss = model.evaluate(X_test, Y_test, batch_size=batch_size)
print(model.metrics_names[0], loss)
print("Perplexity:", np.exp(loss))
if False:
for i in range(5):
print('----- test ', i+1, '-----')
start_index = random.randint(0, len(string_tokens) - max_len - 1)
sentence = string_tokens[start_index: start_index + max_len]
print('sentence: ', ''.join(sentence))
print('next: ', string_tokens[start_index + max_len])
x_pred = np.zeros((1, max_len))
for t, token in enumerate(sentence):
x_pred[0, t] = token_to_index[token]
preds = model.predict(x_pred, verbose=0)[0]
print('predicted next:', index_to_token[np.argmax(preds)+1])