-
Notifications
You must be signed in to change notification settings - Fork 16
/
utils_data.py
executable file
·278 lines (236 loc) · 10.4 KB
/
utils_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from torch.utils.data import Dataset
import torch
import pickle
from tqdm import tqdm
import action_matching, action_type
import numpy as np
import jax.numpy as jnp
import random
import re
img_shape = {
"resnet": (512, 2048),
"clip": (49, 2048),
"detr": (100, 256),
"vit": (577, 768),
"vit-large": (145, 1024),
"vit-global": (1, 768),
"vit-merge": (578, 768),
}
def load_data(args, split):
target_text = []
source_text = []
source_image = []
anno_positions = []
if args.all_data:
if split == "train":
data = []
for subdir in ["general", "google_apps", "install", "single", "web_shopping"]:
print(f"loading {subdir}", len(data))
with open(f"dataset/blip/{subdir}_{args.data_root}_{split}.obj", "rb") as rp:
sub_data = pickle.load(rp)
if subdir == "google_apps":
sub_data = random.sample(sub_data, int(len(sub_data) * args.all_data))
data.extend(sub_data)
else:
# we use general subset for dev/test
with open(f"{args.eval_subset}_{split}.obj", "rb") as rp:
data = pickle.load(rp)
else:
with open(f"{args.data_root}_{split}.obj", "rb") as rp:
data = pickle.load(rp)
if args.data_ratio:
data = random.sample(data, int(len(data) * args.data_ratio))
for qid, episode in enumerate(tqdm(data)):
episode_id = episode["episode_id"]
episode_data = episode["data"]
if args.use_history:
history_action = []
if args.use_img_history:
history_image = [torch.zeros(args.img_dim)] * args.use_history
for step_idx, step_data in enumerate(episode_data):
question = step_data["goal"]
question = f"Goal: {question}"
image = step_data["image"]
ui_positions = step_data["ui_positions"]
ui_text = step_data["ui_text"]
ui_type = step_data["ui_type"]
if args.use_layout:
icon_string = ""
for ui_idx, ui_type_i in enumerate(ui_type):
ui_axis = ui_positions[ui_idx]
top, left, height, width = ui_axis
# The y-axis is inverted for AndroidEnv, so bottom = top + height.
bottom, right = top + height, left + width
ui_axis = [top, left, bottom, right]
ui_axis = ["{:.4f}".format(axis) for axis in ui_axis]
ui_axis = f"({ui_axis[0]}, {ui_axis[1]}, {ui_axis[2]}, {ui_axis[3]})"
if ui_type_i == "TEXT":
icon_string += f'<p id={ui_idx} class="text" alt="{ui_axis}">{ui_text[ui_idx]}</p>\n'
elif "ICON" in ui_type_i:
icon_string += f'<img id={ui_idx} class={ui_type_i} alt="{ui_axis}">{ui_text[ui_idx]}</p>\n'
else:
print(icon_string)
assert "parsing ui failed!!!"
question = f"{question}\nScreen: {icon_string}"
# print(question)
result_touch_yx = step_data["result_touch_yx"]
result_lift_yx = step_data["result_lift_yx"]
result_action = step_data["result_action"][0]
result_text = step_data["result_action"][1]
result_text = result_text.replace("\\", "").replace('"','').replace("'","")
if args.transform_axis:
scroll_map = {
"up": [[0.8000, 0.5000], [0.2000, 0.5000]],
"down": [[0.2000, 0.5000], [0.8000, 0.5000]],
"left": [[0.5000, 0.8000], [0.5000, 0.2000]],
"right": [[0.5000, 0.2000], [0.5000, 0.8000]]
}
action_touch_yx = jnp.asarray(result_touch_yx)
action_lift_yx = jnp.asarray(result_lift_yx)
if result_action == "DUAL_POINT":
if is_tap_action(action_touch_yx, action_lift_yx):
result_touch_yx = [round(axis, 4) for axis in result_touch_yx]
# if touching, the lift can be the same as touch
result_lift_yx = result_touch_yx
else:
drags_match = _check_drag_actions_match(
action_touch_yx, action_lift_yx
)
result_touch_yx, result_lift_yx = scroll_map[drags_match]
target_action = f'"action_type": "{result_action}", "touch_point": "{result_touch_yx}", "lift_point": "{result_lift_yx}", "typed_text": "{result_text}"'
if args.use_history:
prev_actions = "\n".join(history_action)
question = f"Previous Actions: {prev_actions}\n{question}"
if args.use_img_history:
image = history_image + [image]
image = torch.stack(image)
if args.use_future:
future_actions = episode_data[step_idx:]
if len(future_actions) > args.use_future:
future_actions = future_actions[:args.use_future]
future_actions = "[" + ",".join([action_t["result_action"][0] for action_t in future_actions]) + "]\n"
target_action_label = "Action Plan: " + future_actions + "; Action Decision: " + target_action
source_text.append(question)
source_image.append(image)
target_text.append(target_action_label)
anno_positions.append(ui_positions)
if args.use_history:
history_action.append(target_action)
if args.use_img_history:
history_image.append(image[-1])
history_image.pop(0)
if len(history_action) > args.use_history:
history_action.pop(0)
if args.debug_num:
if int(qid) > args.debug_num:
break
return source_text, source_image, target_text, anno_positions
_SWIPE_DISTANCE_THRESHOLD = 0.04
def is_tap_action(normalized_start_yx, normalized_end_yx):
distance = jnp.linalg.norm(
jnp.array(normalized_start_yx) - jnp.array(normalized_end_yx))
return distance <= _SWIPE_DISTANCE_THRESHOLD
def _check_drag_actions_match(
drag_touch_yx,
drag_lift_yx,
):
"""Determines if two drag actions are the same."""
# Store drag deltas (the change in the y and x coordinates from touch to
# lift), magnitudes, and the index of the main axis, which is the axis with
# the greatest change in coordinate value (e.g. a drag starting at (0, 0) and
# ending at (0.3, 0.5) has a main axis index of 1).
drag_1_deltas = drag_lift_yx - drag_touch_yx
drag_1_magnitudes = jnp.abs(drag_1_deltas)
drag_1_main_axis = np.argmax(drag_1_magnitudes)
# y axis
if drag_1_main_axis == 0:
if drag_1_deltas[0] < 0:
scroll = "up"
else:
scroll = "down"
elif drag_1_main_axis == 1:
if drag_1_deltas[1] < 0:
scroll = "left"
else:
scroll = "right"
return scroll
class AITWDatasetImg(Dataset):
"""
Creating a custom dataset for reading the dataset and
loading it into the dataloader to pass it to the
neural network for finetuning the model
"""
def __init__(
self, data, tokenizer, source_len, target_len
):
"""
Initializes a Dataset class
Args:
dataframe (pandas.DataFrame): Input dataframe
tokenizer (transformers.tokenizer): Transformers tokenizer
source_len (int): Max length of source text
target_len (int): Max length of target text
source_text (str): column name of source text
target_text (str): column name of target text
"""
self.tokenizer = tokenizer
self.source_len = source_len
self.summ_len = target_len
self.source_text = data[0]
self.source_image = data[1]
self.target_text = data[2]
self.anno_positions = data[3]
def __len__(self):
"""returns the length of dataframe"""
return len(self.target_text)
def __getitem__(self, index):
"""return the input ids, attention masks and target ids"""
source_text = str(self.source_text[index])
source_image = self.source_image[index]
target_text_org = str(self.target_text[index])
# abc = self.tokenizer.tokenize(target_text)
# print(len(abc))
pattern = r'(?<=Action Decision:\s).*'
result = re.search(pattern, target_text_org)
target_text = result.group(0)
target_text = target_text.strip()
target_dict = eval("{" + target_text + "}")
action = action_type.ActionType[target_dict["action_type"]].value
touch_point = eval(target_dict["touch_point"])
lift_point = eval(target_dict["lift_point"])
# cleaning data so as to ensure data is in string type
source_text = " ".join(source_text.split())
target_text_org = " ".join(target_text_org.split())
source = self.tokenizer.batch_encode_plus(
[source_text],
max_length=self.source_len,
pad_to_max_length=True,
truncation=True,
padding="max_length",
return_tensors="pt",
)
target = self.tokenizer.batch_encode_plus(
[target_text_org],
max_length=self.summ_len,
pad_to_max_length=True,
truncation=True,
padding="max_length",
return_tensors="pt",
)
source_ids = source["input_ids"].squeeze()
source_mask = source["attention_mask"].squeeze()
target_ids = target["input_ids"].squeeze()
image_ids = torch.tensor(source_image).squeeze()
vis_attention_mask = torch.tensor([1]).squeeze()
act_ids = torch.tensor(action).squeeze()
touch_point = torch.tensor(touch_point).squeeze()
lift_point = torch.tensor(lift_point).squeeze()
return {
"input_ids": source_ids,
"attention_mask": source_mask,
"image_ids": image_ids,
"labels": target_ids,
"target_act": act_ids,
"target_touch": touch_point,
"target_lift": lift_point
}