For more information on CUDA runtime environment variables, see CUDA Environment Variables.
PyTorch Environment Variables
Variable | Description |
---|---|
PYTORCH_NO_CUDA_MEMORY_CACHING |
If set to 1 , disables caching of memory allocations in CUDA. This can be useful for debugging. |
PYTORCH_CUDA_ALLOC_CONF |
For a more in depth explanation of this environment variable, see :ref:`cuda-memory-management`. |
PYTORCH_NVML_BASED_CUDA_CHECK |
If set to 1 , before importing PyTorch modules that check if CUDA is available, PyTorch will use NVML to check if the CUDA driver is functional instead of using the CUDA runtime. This can be helpful if forked processes fail with a CUDA initialization error. |
TORCH_CUDNN_V8_API_LRU_CACHE_LIMIT |
The cache limit for the cuDNN v8 API. This is used to limit the memory used by the cuDNN v8 API. The default value is 10000, which roughly corresponds to 2GiB assuming 200KiB per ExecutionPlan. Set to 0 for no limit or a negative value for no caching. |
TORCH_CUDNN_V8_API_DISABLED |
If set to 1 , disables the cuDNN v8 API. And will fall back to the cuDNN v7 API. |
TORCH_ALLOW_TF32_CUBLAS_OVERRIDE |
If set to 1 , forces TF32 enablement, overrides set_float32_matmul_precision setting. |
TORCH_NCCL_USE_COMM_NONBLOCKING |
If set to 1 , enables non-blocking error handling in NCCL. |
TORCH_NCCL_AVOID_RECORD_STREAMS |
If set to 0 , enables fallback to record streams-based synchronization behavior in NCCL. |
TORCH_CUDNN_V8_API_DEBUG |
If set to 1 , sanity check whether cuDNN V8 is being used. |
CUDA Runtime and Libraries Environment Variables
Variable | Description |
---|---|
CUDA_VISIBLE_DEVICES |
Comma-separated list of GPU device IDs that should be made available to CUDA runtime. If set to -1 , no GPUs are made available. |
CUDA_LAUNCH_BLOCKING |
If set to 1 , makes CUDA calls synchronous. This can be useful for debugging. |
CUBLAS_WORKSPACE_CONFIG |
This environment variable is used to set the workspace configuration for cuBLAS per allocation. The format is :[SIZE]:[COUNT] .
As an example, the default workspace size per allocation is CUBLAS_WORKSPACE_CONFIG=:4096:2:16:8 which specifies a total size of 2 * 4096 + 8 * 16 KiB .
To force cuBLAS to avoid using workspaces, set CUBLAS_WORKSPACE_CONFIG=:0:0 . |
CUDNN_CONV_WSCAP_DBG |
Similar to CUBLAS_WORKSPACE_CONFIG , this environment variable is used to set the workspace configuration for cuDNN per allocation. |
CUBLASLT_WORKSPACE_SIZE |
Similar to CUBLAS_WORKSPACE_CONFIG , this environment variable is used to set the workspace size for cuBLASLT. |
CUDNN_ERRATA_JSON_FILE |
Can be set to a file path for an errata filter that can be passed to cuDNN to avoid specific engine configs, used primarily for debugging or to hardcode autotuning. |
NVIDIA_TF32_OVERRIDE |
If set to 0 , disables TF32 globally across all kernels, overriding all PyTorch settings. |