-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
405 lines (387 loc) · 15.6 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
"""Trainer
"""
import argparse
import importlib
import logging
import os
import numpy as np
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from apex.parallel import DistributedDataParallel, convert_syncbn_model
from apex import amp
import common.meters
import common.modes
import math
import thop
from datasets.vsd4k import DIV2K_
train_chunk = ''
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--dataset',
help='Dataset name.',
default=None,
type=str,
required=True,
)
parser.add_argument(
'--model',
help='Model name.',
default=None,
type=str,
required=True,
)
parser.add_argument(
'--job_dir',
help='Directory to write checkpoints and export models.',
default=None,
type=str,
required=True,
)
parser.add_argument(
'--ckpt',
help='File path to load checkpoint.',
default=None,
type=str,
)
parser.add_argument(
'--override_epoch',
help='Override epoch number when loading from checkpoint.',
default=None,
type=int,
)
parser.add_argument(
'--eval_only',
default=False,
action='store_true',
help='Running evaluation only.',
)
parser.add_argument(
'--eval_datasets',
help='Dataset names for evaluation.',
default=None,
type=str,
nargs='+',
)
# Experiment arguments
parser.add_argument(
'--save_checkpoints_epochs',
help='Number of epochs to save checkpoint.',
default=30,
type=int)
parser.add_argument(
'--keep_checkpoints',
help='Keepining intermediate checkpoints.',
default=False,
action='store_true')
parser.add_argument(
'--train_epochs',
help='Number of epochs to run training totally.',
default=10,
type=int)
parser.add_argument(
'--log_steps',
help='Number of steps for training logging.',
default=100,
type=int)
parser.add_argument(
'--random_seed',
help='Random seed for TensorFlow.',
default=None,
type=int)
parser.add_argument(
'--save_label',
action='store_true',
default=False)
parser.add_argument(
'--save_img',
action='store_true',
default=False)
parser.add_argument(
'--tt',
help='topic and time',
default=None,
type=str)
parser.add_argument(
'--chunk',
help='No. of chunks',
default=None,
type=str)
parser.add_argument(
'--baseline',
help='if it is a baseline training',
default=None,
type=str)
parser.add_argument(
'--pretrained',
help='File path to load checkpoint.',
default='',
type=str,
)
# Performance tuning parameters
parser.add_argument(
'--opt_level',
help='Number of GPUs for experiments.',
default='O0',
type=str)
parser.add_argument(
'--sync_bn',
default=False,
action='store_true',
help='Enabling apex sync BN.')
# Verbose
parser.add_argument(
'-v',
'--verbose',
action='count',
default=0,
help='Increasing output verbosity.',
)
parser.add_argument('--local_rank', default=0, type=int)
parser.add_argument('--node_rank', default=0, type=int)
########Your path to the dataset#########
parser.add_argument("--source_path", type=str, default="/home/lee/data/")
########Your path to the dataset#########
# Parse arguments
args, _ = parser.parse_known_args()
torch.manual_seed(226)
torch.cuda.manual_seed(226)
np.random.seed(226)
logging.basicConfig(
level=[logging.WARNING, logging.INFO, logging.DEBUG][args.verbose],
format='%(asctime)s:%(levelname)s:%(message)s')
dataset_module = importlib.import_module(
'datasets.' + args.dataset if args.dataset else 'datasets')
dataset_module.update_argparser(parser)
model_module = importlib.import_module('models.' +
args.model if args.model else 'models')
model_module.update_argparser(parser)
params = parser.parse_args()
logging.critical(params)
torch.backends.cudnn.benchmark = True
params.distributed = False
params.master_proc = True
train_chunk = params.chunk
if 'WORLD_SIZE' in os.environ:
params.distributed = int(os.environ['WORLD_SIZE']) > 1
print(params.distributed)
if params.distributed:
torch.cuda.set_device(params.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
if params.node_rank or params.local_rank:
params.master_proc = False
train_dataset = dataset_module.get_dataset(common.modes.TRAIN, params)
if params.eval_datasets:
eval_datasets = []
for eval_dataset in params.eval_datasets:
eval_dataset_module = importlib.import_module('datasets.' + eval_dataset)
eval_datasets.append(
(eval_dataset,
eval_dataset_module.get_dataset(common.modes.EVAL, params)))
else:
eval_datasets = [(params.dataset,
dataset_module.get_dataset(common.modes.EVAL, params))]
if params.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset)
eval_sampler = None
params.train_batch_size //= torch.cuda.device_count()
else:
train_sampler = None
eval_sampler = None
train_data_loader = DataLoader(
dataset=train_dataset,
num_workers=params.num_data_threads,
batch_size=params.train_batch_size,
shuffle=(train_sampler is None),
drop_last=True,
collate_fn= DIV2K_.collate_fn,
pin_memory=True,
sampler=train_sampler,
)
eval_data_loaders = [(data_name,
DataLoader(
dataset=dataset,
num_workers=params.num_data_threads,
batch_size=params.eval_batch_size,
shuffle=False,
drop_last=False,
pin_memory=True,
sampler=eval_sampler,
)) for data_name, dataset in eval_datasets]
model, criterion, optimizer, lr_scheduler, metrics = model_module.get_dyna_model_spec(
params)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
criterion = criterion.to(device)
model, optimizer = amp.initialize(
model, optimizer, opt_level=params.opt_level, verbosity=params.verbose)
if params.ckpt or os.path.exists(os.path.join(params.job_dir, 'latest.pth')):
checkpoint = torch.load(
params.ckpt or os.path.join(params.job_dir, 'latest.pth'),
map_location=lambda storage, loc: storage.cuda())
try:
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler_state_dict'])
except RuntimeError as e:
logging.critical(e)
latest_epoch = checkpoint['epoch']
logging.critical('Loaded checkpoint from epoch {}.'.format(latest_epoch))
if params.override_epoch is not None:
latest_epoch = params.override_epoch
logging.critical('Overrode epoch number to {}.'.format(latest_epoch))
else:
latest_epoch = 0
if params.distributed:
if params.sync_bn:
model = convert_syncbn_model(model)
model = DistributedDataParallel(model)
best_filename = []
def train(epoch):
if params.distributed:
train_sampler.set_epoch(epoch)
loss_meter = common.meters.AverageMeter()
time_meter = common.meters.TimeMeter()
model.train()
s_img = []
l_img = []
for batch_idx, (s1,s2) in enumerate(train_data_loader):
if len(s_img) != 16:
s_img.extend(s1)
else:
for (data,target) in s_img:
data = data.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
optimizer.step()
s_img = []
if len(l_img) != 16:
l_img.extend(s2)
else:
for (data,target) in l_img:
data = data.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
optimizer.step()
l_img = []
if batch_idx % params.log_steps == 0:
loss_meter.update(loss.item(), data.size(0))
time_meter.update_count(batch_idx + 1)
logging.info(
'Train epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tSpeed: {:.6f} seconds/batch'
.format(epoch, batch_idx * len(data),
len(train_data_loader) * len(data),
100. * batch_idx / len(train_data_loader), loss.item(),
time_meter.avg))
logging.critical('Train epoch {} finished.\tLoss: {:.6f}'.format(
epoch, loss_meter.avg))
if params.master_proc:
writer.add_scalar('training_loss', loss_meter.avg, epoch)
return loss_meter.avg
def evaluate(epoch, params, best_filename):
with torch.no_grad():
if len(best_filename) >= 1:
best_model = torch.load(best_filename[-1])
model.load_state_dict(best_model['model_state_dict'])
optimizer.load_state_dict(best_model['optimizer_state_dict'])
lr_scheduler.load_state_dict(best_model['lr_scheduler_state_dict'])
model.eval()
psnr_list = []
toPIL = transforms.ToPILImage()
start = 0
save_image_fold = '/save_img_fold/'
filename = eval_dataset_module.get_filename(params)
if params.baseline is not None:
params.chunk = params.baseline
print('saving img is:', params.save_img)
if params.save_img and not os.path.exists(params.source_path+ params.tt.split('/')[
0] + save_image_fold+'/' + params.chunk + '_' + params.model + '_' + 'X' + str(params.scale)):
print('----creating fold to save image----')
os.makedirs(params.source_path + params.tt.split('/')[
0] + save_image_fold+'/' + params.chunk + '_' + params.model + '_' + 'X' + str(params.scale))
for eval_data_name, eval_data_loader in eval_data_loaders:
metric_meters = {}
for metric_name in metrics.keys():
metric_meters[metric_name] = common.meters.AverageMeter()
time_meter = common.meters.TimeMeter()
for data, target in eval_data_loader:
data = data.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
output = model(data)
if params.save_img == True:
output[0] = (output[0] * 255).round().clamp(0, 255) / 255
pic = toPIL(output[0])
pic.save(params.source_path+ params.tt.split('/')[
0] + save_image_fold+'/' + params.chunk + '_' + params.model + '_' + 'X' + str(
params.scale) + '/' + filename[start])
start = start + 1
for metric_name in metrics.keys():
if params.save_label == True and metric_name == 'PSNR':
p = metrics[metric_name](output, target).item()
psnr_list.append(p)
metric_meters[metric_name].update(
metrics[metric_name](output, target).item(), data.size(0))
time_meter.update(data.size(0))
if params.save_label:
np.save("label_"+params.tt.split('/')[0], psnr_list)
print('---label saved---')
for metric_name in metrics.keys():
if metric_name == 'PSNR_MSE':
# logging.critical('Eval {}: Average MSE for PSNR: {:.4f}'.format(
# eval_data_name, metric_meters[metric_name]))
psnr_mse = -10*math.log10(metric_meters[metric_name].avg)
logging.critical('Eval {}: MSE:{} Average {}: {:.4f}'.format(
eval_data_name,metric_meters[metric_name].avg,metric_name,psnr_mse))
if metric_name == 'loss':
logging.critical('Eval {}: Average {}: {:.4f}'.format(
eval_data_name, metric_name, metric_meters[metric_name].avg))
logging.critical('Eval {}: Average Speed: {:.6f} seconds/sample'.format(
eval_data_name, time_meter.avg))
if params.eval_only:
evaluate(None, params, best_filename)
exit()
if params.master_proc:
writer = SummaryWriter(params.job_dir)
pre_loss = 100000000
for epoch in range(latest_epoch + 1, params.train_epochs + 1):
temp_loss = train(epoch)
lr_scheduler.step()
if temp_loss < pre_loss:
pre_loss = temp_loss
if params.master_proc:
if not os.path.exists(params.job_dir):
os.makedirs(params.job_dir)
torch.save(
{
'model_state_dict':
model.module.state_dict()
if params.distributed else model.state_dict(),
'optimizer_state_dict':
optimizer.state_dict(),
'lr_scheduler_state_dict':
lr_scheduler.state_dict(),
'epoch':
epoch,
}, os.path.join(params.job_dir,
params.model + '_' + params.tt.split('/')[0] + '_epoch_' + str(epoch) + 'X' + str(
params.scale) + '_' + params.chunk + '.pth'))
best_filename.append(os.path.join(params.job_dir,
params.model + '_' + params.tt.split('/')[0] + '_epoch_' + str(
epoch) + 'X' + str(params.scale) + '_' + params.chunk + '.pth'))
if len(best_filename) > 1:
os.remove(best_filename[-2])
if epoch == params.train_epochs:
evaluate(params.train_epochs, params, best_filename)
if params.master_proc:
writer.close()