-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path02-analysis-icd9.Rmd
588 lines (502 loc) · 20.7 KB
/
02-analysis-icd9.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
---
title: "Neuro analyses, ICD-9 code"
output:
html_document:
theme: lumen
toc: true
toc_float: false
code_download: true
highlight: tango
knit: (function(inputFile, encoding) {
rmarkdown::render(inputFile, encoding = encoding, output_dir = "docs") })
---
```{r warning=FALSE, message=FALSE}
library(dplyr)
library(tidyr)
library(readr)
library(ggplot2)
library(rcartocolor)
library(forcats)
library(purrr)
library(DT)
library(cowplot)
load('data/processed-data.Rdata')
theme_set(theme_bw() + theme(legend.title = element_blank()))
source('utils.R')
```
## Prevalence analysis
Calculate percentages:
```{r fig.height=9}
code_prevalence <- diag_icd_9 %>%
mutate(time = fct_relevel(time, c('After admission', 'Before admission'))) %>%
select(- contains('ICD10_')) %>%
group_by(siteid, time, icd, `Neurological Disease Category`, full_icd) %>%
mutate(percent_pats_site = num_patients_icd/num_patients_all,
siteid = as.factor(siteid)) %>%
ungroup() %>%
group_by(Country, time, icd, `Neurological Disease Category`, full_icd) %>%
mutate(percent_pats_country = sum(num_patients_icd)/all_pats_country) %>%
ungroup()
```
```{r include=FALSE}
# diag_icd_9 %>%
# count(siteid, icd, `Neurological Disease Category`) %>%
# pull(icd) %>%
# unique() %>%
# length()
#
# check = diag_icd_9 %>%
# count(icd, `Neurological Disease Category`)
diag_icd_9 %>%
count(siteid, Country, num_patients_all)
diag_icd_9 %>%
count(siteid, Country, num_patients_all) %>%
filter(Country == 'Italy')
diag_icd_9 %>% filter(
siteid %in% intersect(unique(diag_icd_9$siteid), unique(diag_icd_10$siteid))
) %>%
select(Country, siteid) %>%
distinct()
diag_icd_9 %>%
filter(Country == 'USA') %>%
group_by(siteid) %>%
summarise(site_pats_9 = sum(num_patients_icd), .groups = 'drop') %>%
left_join(diag_icd_10 %>%
filter(siteid %in% diag_icd_9$siteid) %>%
group_by(siteid) %>%
summarise(site_pats_10 = sum(num_patients_icd), .groups = 'drop'),
by = 'siteid') %>%
pivot_longer(- siteid) %>%
ggplot(aes(x = siteid, y = value, fill = name)) +
geom_col(position = 'dodge')
```
```{r fig.height=4, fig.width=10}
diff_code <- code_prevalence %>%
select(location = siteid, icd, `Neurological Disease Category`, time, percent_pats_site) %>%
pivot_wider(names_from = time, values_from = percent_pats_site,
id_cols = c(location, icd, `Neurological Disease Category`),
values_fill = list(percent_pats_site = 0)) %>%
mutate(percent_diff = `After admission` - `Before admission`,
loc_type = 'Site', location = tolower(location))
diff_code_country <- code_prevalence %>%
select(location = Country, icd, `Neurological Disease Category`, time, percent_pats_country) %>%
distinct() %>%
pivot_wider(names_from = time, values_from = percent_pats_country,
id_cols = c(location, icd, `Neurological Disease Category`),
values_fill = list(percent_pats_country = 0)) %>%
mutate(percent_diff = `After admission` - `Before admission`,
loc_type = 'Country')
diff_code_loc <- diff_code %>%
bind_rows(diff_code_country)
diff_heat <- diff_code_loc %>%
ggplot(aes(y = icd, x = location, fill = percent_diff)) +
geom_tile() +
labs(y = NULL, x = NULL, fill = 'After - Before') +
scale_x_discrete(drop = F) +
scale_fill_gradient2(#009392,#39b185,#9ccb86,#e9e29c,#eeb479,#e88471,#cf597e
low = '#798234',
high = '#cf597e',
labels = scales::percent_format(accuracy = 1)) +
facet_grid(rows = vars(`Neurological Disease Category`),
cols = vars(fct_rev(loc_type)), space = 'free', scale = 'free') +
heat_theme_bottom() +
theme(panel.spacing.x = unit(10, "points"),
plot.margin = unit(c(1,8,0.5,12), "lines"),
axis.text.x = element_text(hjust = 1)) +
# theme() +
NULL
diff_heat
# ggsave('figs/icd9_diff_heatmap.png', diff_heat, height = 4, width = 8)
```
### Hypothesis testing
```{r}
my_t <- function(icdi){
diff_icd <- diff_code %>% filter(icd == icdi)
data.frame(
icd = icdi,
t.test(diff_icd$percent_diff) %>%
broom::tidy()
)
}
prevalence_stats <- unique(diff_code$icd) %>%
lapply(my_t) %>%
bind_rows()
prevalence_stats$p_value_holm <- p.adjust(prevalence_stats$p.value, 'holm')
prevalence_stats$p_value_bh <- p.adjust(prevalence_stats$p.value, 'BH')
prevalence_stats %>%
filter(p_value_bh < 0.05)
```
### Prevalence change table
```{r}
prevalence_stats %>%
arrange(desc(estimate)) %>%
mutate(ci = paste0('(', round(conf.low*100, 2), '%, ',
round(conf.high*100, 2), '%)')) %>%
select(- c(parameter, method, alternative, conf.low, conf.high)) %>%
datatable(rownames = FALSE, filter = 'top') %>%
formatRound(c('statistic'), 1) %>%
formatPercentage('estimate', 1) %>%
formatSignif(c('p.value', 'p_value_holm', 'p_value_bh'), 3) %>%
{.}
prevalence_stats %>%
write_csv('results/icd9_prevalence_stats.csv')
```
### Compute confidence inverval
of the mean proportion of patients diagnosed with each ICD
```{r}
alpha_threshold <- qnorm(0.975)
ci_prevalence <- code_prevalence %>%
group_by(time, full_icd) %>%
add_count() %>%
summarise(
mean_prop = mean(percent_pats_site, na.rm = T),
sd_prob = sd(percent_pats_site, na.rm = T),
n = mean(n),
me_prop = alpha_threshold * sd_prob / sqrt(n)
) %>%
ungroup()
```
```{r fig.width=10, fig.height=5}
icd9_time <- diag_icd_9 %>%
mutate(time = fct_relevel(time, c('After admission', 'Before admission'))) %>%
group_by(full_icd, time) %>%
summarise(pats_icd9_time = sum(num_patients_icd, na.rm = T), .groups = 'drop')
sorted_icds <- code_prevalence %>%
ungroup() %>%
select(time, percent_pats_site, full_icd, siteid) %>%
pivot_wider(names_from = time, values_from = percent_pats_site, values_fill = list(percent_pats_site = 0)) %>%
group_by(full_icd) %>%
summarise(after = mean(`After admission`, na.rm = T),
before = mean(`Before admission`, na.rm = T),
diff_prev = after - before,
.groups = 'drop') %>%
arrange(diff_prev) %>%
pull(full_icd)
total_icd <- icd9_time %>%
ggplot(aes(x = pats_icd9_time, y = fct_relevel(full_icd, sorted_icds), fill = time)) +
scale_fill_carto_d(palette = 4, guide = guide_legend(reverse = TRUE)) +
geom_col(position = 'dodge') +
theme_minimal() +
scale_x_reverse(expand = expansion(add = c(0,0))) +
scale_y_discrete(labels = NULL) +
theme(legend.position = c(0.3, 0.15),
legend.title = element_blank(),
legend.key.height = unit(4, 'mm'),
plot.margin = margin(t = 1, r = 0.5, l = 0.5, unit = 'lines')) +
labs(x = 'Total number of patients at all sites', y = NULL)
percent_icd <-
ci_prevalence %>%
ggplot(aes(group = time)) +
ggstance::geom_pointrangeh(
aes(x = mean_prop,
y = fct_relevel(full_icd, sorted_icds),
xmin = mean_prop - me_prop,
xmax = mean_prop + me_prop,
color = time),
position = position_dodge(width = 0.3),
stroke = 0.1, fatten = 3, size = 0.7
) +
scale_color_carto_d(palette = 4, guide = NULL) +
theme_minimal() +
theme(legend.position = c(0.75, 0.1),
legend.title = element_blank(),
axis.text.y = element_text(hjust = 0.5),
plot.margin = margin(t = 1, unit = 'lines')) +
scale_x_continuous(expand = expansion(add = c(0, 0.03)),
labels = scales::percent_format(accuracy = 1)) +
labs(x = 'Proportion of patients each site', y = NULL)
icd9_prevalence_plots <- cowplot::plot_grid(total_icd, percent_icd, ncol = 2,
rel_widths = c(1, 2.5))
icd9_prevalence_plots
# ggsave('figs/icd9_prevalence.png', icd9_prevalence_plots, height = 5, width = 10)
```
```{r}
plot_grid(diff_heat, icd9_prevalence_plots, rel_heights = c(1, 0.85),
ncol = 1, labels = 'AUTO') %>%
ggsave('figs/icd9_prevalence_AB.png', ., height = 8, width = 9.7)
plot_grid(diff_heat, icd9_prevalence_plots, rel_heights = c(1, 0.85),
ncol = 1, labels = 'AUTO') %>%
ggsave('figs/tiffs/efig_4.tiff', ., height = 8, width = 9.7, dpi = 300)
```
```{r fig.height=9}
before_code_prev <- diff_code_loc %>%
ggplot(aes(y = icd, x = location, fill = `Before admission`)) +
geom_tile() +
labs(y = NULL, x = NULL) +
#f6d2a9,#f5b78e,#f19c7c,#ea8171,#dd686c,#ca5268,#b13f64
scale_fill_gradient(
low = '#d1eeea', high = '#2a5674',
labels = scales::percent_format(accuracy = 1),
limits = c(0, max(diff_code_loc$`After admission`)),
guide = guide_legend(override.aes = list(fill = "white"))) +
scale_x_discrete(drop = F) +
facet_grid(rows = vars(`Neurological Disease Category`),
cols = vars(fct_rev(loc_type)), space = 'free', scale = 'free') +
heat_theme_top() +
NULL
after_code_prev <- diff_code_loc %>%
ggplot(aes(y = icd, x = location, fill = `After admission`)) +
geom_tile() +
labs(y = NULL, x = NULL, fill = 'Patient % per
site/country') +
scale_x_discrete(drop = F) +
scale_fill_gradient(low = '#d1eeea', high = '#2a5674',
labels = scales::percent_format(accuracy = 1),
limits = c(0, max(diff_code_loc$`After admission`))) +
facet_grid(rows = vars(`Neurological Disease Category`),
cols = vars(fct_rev(loc_type)), space = 'free', scale = 'free') +
heat_theme_bottom() +
theme(legend.title = element_text(hjust = 0)) +
NULL
heats <- cowplot::plot_grid(before_code_prev, after_code_prev, ncol = 1,
rel_heights = c(1, 1.15),
labels = c('A. Before admission', 'B. After admission'))
heats
ggsave('figs/icd9_heatmap.png', heats, height = 10, width = 7)
ggsave('figs/tiffs/efig_3.tiff', heats, height = 10, width = 7, dpi = 300)
```
```{r}
diff_code %>%
filter(icd == 'R41') %>%
ungroup() %>%
count(percent_diff > 0)
diff_code %>%
filter(icd == 'G93') %>%
ungroup() %>%
count(percent_diff > 0)
diff_code %>%
filter(icd == 'R42') %>%
ungroup() %>%
count(percent_diff > 0)
```
# Severity descriptive statistics
What ICD code has the most number severe patients?
Sites with more severe patients?
```{r fig.height=9}
severe_code <- diag_icd_9 %>%
mutate(percent_severe_site = num_patients_ever_severe_icd1/num_patients_icd,
siteid = as.factor(siteid))
severe_bef_heat <- severe_code %>%
filter(time == 'Before admission') %>%
ggplot(aes(y = icd, x = siteid, fill = percent_severe_site)) +
geom_tile() +
labs(y = NULL, x = NULL, fill = 'Severe % per ICD') +
#3d5941,#778868,#b5b991,#f6edbd,#edbb8a,#de8a5a,#ca562c
scale_fill_gradient(
# low = '#f6d2a9', high = '#b13f64',
low = 'white', high = '#ca562c',
guide = guide_legend(override.aes = list(fill = "white")),
) +
scale_x_discrete(drop = F) +
facet_grid(rows = vars(`Neurological Disease Category`), space = 'free', scale = 'free') +
heat_theme_top() +
NULL
severe_aft_heat <- severe_code %>%
filter(time == 'After admission') %>%
ggplot(aes(y = icd, x = siteid, fill = percent_severe_site)) +
geom_tile() +
labs(y = NULL, x = NULL, fill = 'Severe % per ICD') +
scale_x_discrete(drop = F) +
#3d5941,#778868,#b5b991,#f6edbd,#edbb8a,#de8a5a,#ca562c
scale_fill_gradient(
low = 'white', high = '#ca562c',
labels = scales::percent_format(accuracy = 1)) +
facet_grid(rows = vars(`Neurological Disease Category`), space = 'free', scale = 'free') +
heat_theme_bottom() +
NULL
severe_heats <- cowplot::plot_grid(severe_bef_heat, severe_aft_heat, ncol = 1,
rel_heights = c(1, 1.15),
labels = c('A. Before admission', 'B. After admission'))
severe_heats
ggsave('figs/icd9_severe_heatmap.png', severe_heats, height = 10, width = 7)
```
# Severity enrichment analysis
## Null hypothesis
For each ICD code, the proportion of severe patients who were diagnosed with that ICD code is similar to the proportion of never-severe patients who were diagnosed with that same ICD code.
For the sake of simplicity in this notebook, we're going to denote patients whose symptoms have been categorized as severe (based on respiratory status +/- requiring ICU) at least once as *severe patients*, and patients whose symptoms have NEVER been categorized as severe as *non-severe patients*.
For each ICD code, we computed the expected number of *severe patients* by multiplying the proportion of *non-severe patients* who were diagnosed with that code with the total number of *severe patients*.
We performed an enrichment analysis to examine the difference of *severe patients* proportions across ICD codes.
We calculated each ICD code's enrichment by dividing the observed proportion of honorees by the expected proportion of honorees and reported a value of log2 enrichment (LOE) and its 95% confidence intervals.
The 95% confidence interval of the LOE was estimated using the Poisson model method [@isbn:9780849394447].
Note that several ICD-9 codes have very small sample size (small number of patients associated with these codes).
Therefore, we should take that into account when interpreting the result of the statistical tests for these codes.
First, remove ICD with very small number of patients across site:
```{r}
small_icds <- diag_icd_9 %>%
group_by(icd) %>%
summarise(num_pats_icd = sum(num_patients_icd, na.rm = TRUE), .groups = 'drop') %>%
filter(num_pats_icd < 5) %>%
pull(icd)
diag_icd_9 <- diag_icd_9 %>%
filter(!icd %in% small_icds)
```
## Before admission
```{r warning=FALSE}
contingency_df <- diag_icd_9 %>%
# filter(time == 'Before admission') %>%
group_by(full_icd, time) %>%
summarise(across(contains('severe'), .fns = sum, na.rm = T), .groups = 'drop') %>%
mutate(Observed = num_patients_ever_severe_icd1,
num_non_severe = num_patients_never_severe_icd1 + num_patients_never_severe_icd0,
num_severe = num_patients_ever_severe_icd1 + num_patients_ever_severe_icd0,
Expected = num_patients_never_severe_icd1/num_non_severe*num_severe,
over_sev = Observed - Expected)
nested_obs_exp <- contingency_df %>%
select(full_icd,
time,
num_patients_never_severe_icd0,
num_patients_never_severe_icd1,
num_patients_ever_severe_icd0,
num_patients_ever_severe_icd1) %>%
group_by(full_icd, time) %>%
nest()
fish_obs_exp <- nested_obs_exp %>%
mutate(fish = map(data, my_fish)) %>%
dplyr::select(-data) %>%
unnest(cols = c(fish)) %>%
mutate(upper = ifelse(is.na(upper), Inf, upper),
ci = paste0('(', round(log2(lower), 1), ', ',
round(log2(upper), 1), ')'),
lestimate = log2(estimate))
fish_obs_exp$`P value (Holm)` <- p.adjust(fish_obs_exp$p_value, 'holm')
fish_obs_exp$`P value (FDR)` <- p.adjust(fish_obs_exp$p_value, 'BH')
```
While the Warning messages mentioned Chi-squared, the p-values were actually calculated using Fisher's Exact test (see more in `epitools::tab2by2.test()`).
Note: small number of observations for ICD-10 code G04, G03, G65:
```{r}
contingency_df %>%
filter(grepl('G04|G03|G65', full_icd)) %>%
datatable()
```
### Country enrichment table {#enrichment_tab}
The full table with all ICD codes and their corresponding enrichment can be browsed interactively below:
```{r}
library(DT)
fish_tab <- fish_obs_exp %>%
left_join(contingency_df, by = c('full_icd', 'time')) %>%
select(full_icd, time, Observed, Expected, over_sev,
estimate, lestimate, ci, p_value,
`P value (Holm)`, `P value (FDR)`) %>%
arrange(desc(over_sev)) %>%
rename('ICD' = 'full_icd',
'Observed - Expected' = 'over_sev',
'Enrichment' = 'estimate',
'Log2(enrichment)' = 'lestimate',
'95% Confidence interval' = 'ci',
'P value (raw)' = 'p_value')
fish_tab %>%
datatable(rownames = FALSE, filter = 'top') %>%
formatRound(c('Observed', 'Expected', 'Observed - Expected',
'Enrichment', 'Log2(enrichment)'), 1) %>%
formatSignif(c('P value (raw)', 'P value (Holm)', 'P value (FDR)'), 3) %>%
{.}
fish_tab %>%
write_csv('results/icd9_fish_tab.csv')
fish_obs_exp %>%
filter(`P value (FDR)` < 0.05) %>%
arrange(time) %>%
mutate(lestimate = round(lestimate, 2),
drr = round((estimate - 1)*100, 0),
lower_drr = (lower - 1)*100,
upper_drr = (upper - 1)*100,
ci_drr = paste0('(', round(lower_drr, 0), ', ',
round(upper_drr, 0), ')'),
p_fdr = format(`P value (FDR)`, digits = 2)) %>%
select(time, full_icd, lestimate, drr, ci_drr, p_fdr) %>%
write_csv('results/icd9_signi.csv')
```
A positive value of LOE indicates a higher proportion of *severe patients* with that ICD code compared to *non-severe patients*.
A LOE value of 1 represents a one-fold enrichment (i.e., observed number of *severe patients* is twice as much as expected).
We found an excess of *severe patients* with the following ICD codes:
- Other disorders of the brain (G93): 63 more *severe patients* than expected, LOE = [], 95% CI []
- Other and unspecified myopathies (G72): 38 more *severe patients* than expected, LOE = [], 95% CI []
- Myositis (M60): 6 more *severe patients* than expected, LOE = [], 95% CI []
### Compute enrichment from proportion comparisons
```{r fig.width = 7, fig.height = 3.5}
filtered_obs_exp <- contingency_df %>%
left_join(fish_obs_exp, by = c('full_icd', 'time')) %>%
mutate(
distance_to_null = case_when(
lower > 1 ~ lower - 1,
TRUE ~ upper - 2
),
presentation = case_when(
lower > 1 & `P value (FDR)` < 0.05 ~ '#d46780',
upper < 1 & `P value (FDR)` < 0.05 ~ '#798234',
TRUE ~ 'grey20'
)) %>%
{.}
```
```{r warning=FALSE}
sorted_icds <- filtered_obs_exp %>%
filter(time == 'After admission') %>%
arrange(Expected) %>%
pull(full_icd)
plot_obs_exp <- filtered_obs_exp %>%
mutate(lestimate = log2(estimate),
llower = log2(lower),
lupper = log2(upper)) %>%
select(full_icd, time, lestimate, llower, lupper, presentation, over_sev, Observed, Expected) %>%
pivot_longer(- c(full_icd, time, presentation, over_sev), names_to = 'type') %>%
mutate(subtype = ifelse(type == 'Expected' | type == 'Observed',
'Sqrt(number of honorees)',
'Log2 enrichment, 95% CI')) %>%
pivot_wider(names_from = type) %>%
mutate(presentation = as.factor(presentation),
full_icd = fct_relevel(full_icd, sorted_icds))
plot_obs_exp_right <- plot_obs_exp %>% filter(subtype == 'Sqrt(number of honorees)')
plot_obs_exp_left <- plot_obs_exp %>% filter(subtype != 'Sqrt(number of honorees)')
```
```{r fig.width = 12, fig.height = 6}
enrichment_plot_before <- plot_enrich(
plot_obs_exp_left %>% filter(time == 'Before admission') %>%
mutate(presentation = droplevels(presentation)),
plot_obs_exp_right %>% filter(time == 'Before admission') %>%
slice(match(sorted_icds, full_icd)) %>%
mutate(presentation = droplevels(presentation)),
nudge = 1.5)
enrichment_plot_after <- plot_enrich(
plot_obs_exp_left %>% filter(time == 'After admission') %>%
mutate(presentation = droplevels(presentation)),
plot_obs_exp_right %>% filter(time == 'After admission') %>% slice(match(sorted_icds, full_icd)) %>%
mutate(presentation = droplevels(presentation)),
nudge = 1.5)
enrichment_plot <- cowplot::plot_grid(
enrichment_plot_before,
enrichment_plot_after,
ncol = 1, hjust = -0.05,
labels = c('A. Before admission', 'B. After admission')
)
enrichment_plot
ggsave('figs/icd9_severe_after.png', enrichment_plot_after, width = 9.5, height = 3.5)
ggsave('figs/tiffs/efig_5.tiff', enrichment_plot_after, width = 9.5, height = 3.5, dpi = 300)
```
Figure caption:
Each ICD code's log2 enrichment (LOE) and its 95% confidence interval (left), and the absolute difference between observed (triangle) and expected (circle) number of *severe patients* (right) before admission.
Positive value of LOE indicates a higher proportion of *severe patients* with that ICD code compared to *non-severe patients*.
Neurological ICD codes are ordered based on the number of *severe patients*.
Difference has been rounded.
```{r fig.width=9}
plot_enrich_both <- plot_obs_exp %>%
ggplot(aes(y = fct_relevel(full_icd, sorted_icds))) +
geom_vline(aes(xintercept = 0), linetype = 2) +
ggstance::geom_pointrangeh(
aes(x = lestimate,
xmin = llower,
xmax = lupper,
color = time),
position = position_dodge(width = 0.3),
stroke = 0.1, fatten = 3, size = 0.7
) +
labs(y = NULL, x = bquote(Log[2] ~ 'enrichment, 95% CI')) +
theme(
legend.position = 'bottom',
legend.background = element_blank(),
axis.title = element_text(size = 9),
plot.margin = margin(5.5, 2, 5.5, 5.5, unit = 'pt')
) +
scale_color_carto_d(palette = 4, direction = -1) +
NULL
plot_enrich_both
ggsave('figs/icd9_severe.png', plot_enrich_both, width = 9, height = 5)
```