-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
497 lines (380 loc) · 15.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
"""
main.py - This module handles web scraping for company data and notifies users of incorrect links.
This module contains functions for web scraping company data from the ADGM public register,
formatting company names, creating requests sessions, parsing HTML, and handling the main
scraping process. It also includes functionality for sending notifications about errors
or completion status.
"""
from concurrent.futures import ThreadPoolExecutor, as_completed
import os
import re
import signal
import sys
import threading
import time
from typing import Optional
from bs4 import BeautifulSoup, ParserRejectedMarkup
from dotenv import load_dotenv
import pandas as pd
import requests
from requests.adapters import HTTPAdapter
from requests.exceptions import RequestException
from urllib3.util.retry import Retry
all_parsed_data = []
load_dotenv()
ntfy_url = os.getenv("NTFY_URL")
COMPANY_NAME_SPECIAL_CASES = {
"Abrdn Investments Middle East Limited": "aberdeen-asset-middle-east-limited",
"Xanara ME LTD": "xanara-management-limited",
"SS&C Financial Services Middle East Limited": "ssandc-financial-services-middle-east-limited",
"Perella Weinberg Partners UK LLP - branch": "perella-weinberg-partners-uk-llp",
"Mubadala (Re)insurance Limited": "mubadala-re-insurance-limited",
"Bitmena Limited": "venomex-limited",
"Bank Lombard Odier & Co. Limited": "bank-lombard-odier--co-limited",
"AT Capital Markets Limited (Withdrawn)": "at-capital-markets-limited",
"Worldwide Cash Express Limited": "worldwide-cash-express",
"BNP Paribas S.A.": "bnp-paribas-sa",
"Shorooq Partners Ltd": "shorooq-vc-partners-ltd",
"UniCredit S.p.A.": "unicredit-spa",
}
def send_ntfy_notification(message: str, headers: Optional[dict[str, str]]) -> None:
"""
Send a notification using the ntfy service.
Args:
message (str): The message to be sent in the notification.
headers (Optional[Dict[str, str]]): Additional headers for the notification.
Returns:
None
"""
if ntfy_url:
requests.post(
ntfy_url,
data=message,
headers=headers,
timeout=15
)
else:
print(
"NTFY_URL not configured in environment variables. Include a URL to get notifications."
"More Info: https://ntfy.sh"
)
def format_company_name(company_name: str) -> str:
"""
Format a company name for use in URL construction.
Args:
company_name (str): The original company name.
Returns:
str: The formatted company name.
"""
# Handle special cases using the dictionary
if company_name in COMPANY_NAME_SPECIAL_CASES:
return COMPANY_NAME_SPECIAL_CASES[company_name]
# General case formatting
# Convert to lowercase
company_name = company_name.lower()
company_name = company_name.replace("&", " and ") # Replace '&' with 'and'
company_name = company_name.replace(".", "-") # Replace periods with hyphens
# Replace non-alphanumeric characters (except spaces) with empty string
company_name = re.sub(r"[^\w\s-]", "", company_name)
# Replace multiple spaces or hyphens with a single hyphen
company_name = re.sub(r"[\s-]+", "-", company_name)
# Remove trailing hyphens
company_name = company_name.rstrip("-")
return company_name
def create_session() -> requests.Session:
"""
Create a requests Session with retry configuration.
Returns:
requests.Session: Configured session object.
"""
session = requests.Session()
retries = Retry(total=5, backoff_factor=0.1, status_forcelist=[500, 502, 503, 504])
adapter = HTTPAdapter(max_retries=retries)
session.mount("https://", adapter)
session.mount("https://", HTTPAdapter(max_retries=retries))
return session
def is_date(string: str) -> bool:
"""
Check if a string looks like a date in a common format.
Args:
string (str): The string to check.
Returns:
bool: True if the string matches a common date format, False otherwise.
"""
date_pattern = r"\d{1,2} \w+ \d{4}"
return re.match(date_pattern, string) is not None
def get_regulated_activities(soup: BeautifulSoup) -> list[dict[str, str]]:
"""
Extract regulated activities from the BeautifulSoup object.
Args:
soup (BeautifulSoup): Parsed HTML content.
Returns:
List[Dict[str, str]]: List of dictionaries containing regulated activity information.
"""
regulated_activities = soup.find(id="raTableContainer_fsfdetail")
ra_list = []
elements: BeautifulSoup = regulated_activities.find_all("div", class_="opn-accord")
for element in elements:
text = (
element.get_text().strip().split("\n")
) # Strip and split based on new lines
# Filter out any empty or whitespace strings from the list
text = [item.strip() for item in text if item.strip()]
ra_list.extend(text)
# Remove every second empty string
result = []
i = 0
while i < len(ra_list):
activity = ra_list[i]
effective_date = None
withdrawn_date = None
# Check if the next item is a date (effective date)
if i + 1 < len(ra_list) and is_date(ra_list[i + 1]):
effective_date = ra_list[i + 1]
i += 1 # Move to the next item (withdrawn date)
# Check if the next item is a withdrawn date
if i + 1 < len(ra_list) and is_date(ra_list[i + 1]):
withdrawn_date = ra_list[i + 1]
i += 1 # Move to the next item
# Create the dictionary and append it to the result
result.append({
"Regulated Activity": activity,
"Effective Date": effective_date,
"Withdrawn Date": withdrawn_date,
})
i += 1 # Move to the next activity
return result
def get_conditions(soup: BeautifulSoup) -> str:
"""
Extract conditions from the BeautifulSoup object.
Args:
soup (BeautifulSoup): Parsed HTML content.
Returns:
str: Extracted conditions.
"""
conditions = soup.find(class_="fsp-first-table specialinfo-table")
conditions_list: list[str] = []
elements: BeautifulSoup = conditions.find_all("div", class_="container")
for element in elements:
text = element.get_text().split("\n")
conditions_list.extend(text)
# Strip blank values
conditions_list = [item.strip() for item in conditions_list if item.strip()]
return conditions_list[1]
def fetch_company_data(session: requests.Session, company: str) -> dict[str, str]:
"""
Fetch and parse company data from the ADGM website.
Args:
session (requests.Session): Session object for making HTTP requests.
company (str): Name of the company to fetch data for.
Returns:
Dict[str, str]: Dictionary containing parsed company data.
"""
loop_start_time = time.time()
headers = {
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:130.0) Gecko/20100101 Firefox/130.0",
"Accept": ("text/html,application/xhtml+xml,application/xml;"
"q=0.9,image/avif,image/jxl,image/webp,image/png,image/svg+xml,*/*;q=0.8"),
}
url = (
f"https://www.adgm.com/public-registers/fsra/fsf/{format_company_name(company)}"
)
try:
response = session.get(url, headers=headers, timeout=10)
if response.status_code == 404:
print(
f"There is a problem with the URL for {company}."
f"\n{format_company_name(company)} does not seem to"
" be the correct URL for this company."
)
send_ntfy_notification(
message=f"Got {response.status_code} for {company}",
headers={
"Title": (f"Incorrect link for {company}.\n\n"
"Check if the link ending is correct by any chance."),
"Priority": "urgent",
"Tags": "warning,adgm, fsra-register,incorrect-link,404-Error",
"Actions": ("view, Go to FSRA Public Register, "
"https://www.adgm.com/public-registers/fsra"),
},
)
return {"Company": company}
response.raise_for_status() # Raises an HTTPError for bad responses
except requests.exceptions.RequestException as e:
print(f"Error fetching data for {company}: {e}")
send_ntfy_notification(
f"Error fetching data for {company}: {e}",
headers={
"Title": f"Error fetching data for {company}",
"Priority": "urgent",
"Tags": "warning,adgm,fsra-register,error",
},
)
return {"Company": company}
soup = BeautifulSoup(response.content, "html.parser")
# Extract Regulated Activities
regulated_activities = get_regulated_activities(soup)
conditions = get_conditions(soup)
company_data = {"Company": company, "Conditions": conditions}
# Append data to Dataframe
if regulated_activities:
for i, activity in enumerate(regulated_activities, start=1):
company_data[f"Regulated Activity {i}"] = activity["Regulated Activity"]
company_data[f"Effective Date {i}"] = activity["Effective Date"]
company_data[f"Withdrawn Date {i}"] = activity["Withdrawn Date"]
print(
f"Data extracted for {company} - Took {time.time() - loop_start_time:.2f} seconds"
)
return company_data
def main(companies: list[str], output_file: str) -> None:
"""
Main function to orchestrate the web scraping process.
Args:
companies (List[str]): List of company names to scrape data for.
output_file (str): Name of the output CSV file.
Returns:
None
"""
session = create_session()
df = pd.DataFrame()
executor = ThreadPoolExecutor(max_workers=10)
shutdown_event = threading.Event()
def signal_handler(*_):
print("\nCtrl+C pressed. Shutting down gracefully...")
shutdown_event.set()
executor.shutdown(wait=False, cancel_futures=True)
signal.signal(signal.SIGINT, signal_handler)
try:
print("Starting data extraction...")
start_time = time.time()
process_company_data(companies, session, executor, shutdown_event, df)
if shutdown_event.is_set():
save_results(df, output_file, start_time)
else:
save_partial_results(df, output_file)
except RequestException as e:
handle_extraction_error(df, output_file, f"Network error: {e}")
except ParserRejectedMarkup as e:
handle_extraction_error(df, output_file, f"HTML parsing error: {e}")
except pd.errors.EmptyDataError as e:
handle_extraction_error(df, output_file, f"DataFrame error: {e}")
except IOError as e:
handle_extraction_error(df, output_file, f"I/O error: {e}")
except Exception as e:
handle_extraction_error(df, output_file, f"Unexpected error: {e}")
raise
finally:
executor.shutdown(wait=True)
print("All tasks have been completed or cancelled.")
def process_company_data(companies: list[str], session: requests.Session,
executor: ThreadPoolExecutor, shutdown_event: threading.Event,
df: pd.DataFrame) -> None:
"""
Process company data using multi-threading.
Args:
companies (List[str]): List of company names to process.
session (requests.Session): Session object for making HTTP requests.
executor (ThreadPoolExecutor): Executor for multi-threading.
shutdown_event (threading.Event): Event to signal shutdown.
df (pd.DataFrame): DataFrame to store results.
Returns:
None
"""
future_to_company = {executor.submit(fetch_company_data, session, company): company
for company in companies if not shutdown_event.is_set()}
for future in as_completed(future_to_company):
if shutdown_event.is_set():
break
try:
company_data = future.result()
if company_data:
df = pd.concat([df, pd.DataFrame([company_data])], ignore_index=True)
except requests.RequestException as exc:
print(f"{future_to_company[future]} generated a request exception: {exc}")
except ValueError as exc:
print(f"{future_to_company[future]} generated a value error: {exc}")
except KeyError as exc:
print(f"{future_to_company[future]} generated a key error: {exc}")
def save_results(df: pd.DataFrame, output_file: str, start_time: float) -> None:
"""
Save the results to a CSV file and send a notification.
Args:
df (pd.DataFrame): DataFrame containing the results.
output_file (str): Name of the output CSV file.
start_time (float): Start time of the data extraction process.
Returns:
None
"""
df.to_csv(output_file, index=False)
total_time = time.time() - start_time
minutes, seconds = divmod(total_time, 60)
print(f"Data extraction completed in {int(minutes)} min {seconds:.2f} sec")
send_ntfy_notification(
message=f"Job completed in {int(minutes)} minutes {seconds:.2f} seconds.",
headers={
"Title": "ADGM Register data extraction successful",
"Priority": "4",
"Tags": "white_check_mark,muscle,adgm-register",
},
)
def save_partial_results(df: pd.DataFrame, output_file: str) -> None:
"""
Save partial results to a CSV file and send a notification.
Args:
df (pd.DataFrame): DataFrame containing the partial results.
output_file (str): Name of the output CSV file.
Returns:
None
"""
print("Data extraction was interrupted. Saving partial results...")
partial_output_file = f"partial_{output_file}"
df.to_csv(partial_output_file, index=False)
print(f"Partial results saved to {partial_output_file}")
send_ntfy_notification(
message=f"Job was interrupted. Partial results saved to {partial_output_file}",
headers={
"Title": "ADGM Register data extraction interrupted",
"Priority": "3",
"Tags": "negative_squared_cross_mark,adgm-register,ctrl-c,interrupted",
},
)
def handle_extraction_error(df: pd.DataFrame, output_file: str, error: Exception) -> None:
"""
Handle errors during the extraction process, save partial results, and send a notification.
Args:
df (pd.DataFrame): DataFrame containing the partial results.
output_file (str): Name of the output CSV file.
error (Exception): The exception that occurred during extraction.
Returns:
None
"""
partial_output_file = f"partial_{output_file}"
df.to_csv(partial_output_file, index=False)
send_ntfy_notification(
message=(f"App crashed\nPartial results saved to {partial_output_file}\n\n"
f"An error occurred during data extraction:\n {error}"),
headers={
"Title": "ADGM Register data extraction failed",
"Priority": "5",
"Tags": "warning,adgm.fsra-register,error",
},
)
if __name__ == "__main__":
file_path = os.getenv("COMPANY_NAMES_FILE_PATH")
if not file_path:
print(
"File path not specified. "
"Please specify it in the '.env' file with the variable 'COMPANY_NAMES_FILE_PATH'"
)
sys.exit()
try:
with open(file_path, "r", encoding="utf-8") as file:
# List comprehension to read and strip each line
company_names = [line.strip() for line in file]
except FileNotFoundError:
print(f"The file at {file_path} was not found.")
sys.exit()
except IOError:
print(f"An error occurred while reading the file at {file_path}.")
sys.exit()
main(company_names, "adgm_public_register_data.csv")