diff --git a/docs/concepts/flows.mdx b/docs/concepts/flows.mdx
index e3f0e6b451..9ead26d70b 100644
--- a/docs/concepts/flows.mdx
+++ b/docs/concepts/flows.mdx
@@ -18,60 +18,63 @@ Flows allow you to create structured, event-driven workflows. They provide a sea
4. **Flexible Control Flow**: Implement conditional logic, loops, and branching within your workflows.
+5. **Input Flexibility**: Flows can accept inputs to initialize or update their state, with different handling for structured and unstructured state management.
+
## Getting Started
Let's create a simple Flow where you will use OpenAI to generate a random city in one task and then use that city to generate a fun fact in another task.
-```python Code
+### Passing Inputs to Flows
-from crewai.flow.flow import Flow, listen, start
-from dotenv import load_dotenv
-from litellm import completion
+Flows can accept inputs to initialize or update their state before execution. The way inputs are handled depends on whether the flow uses structured or unstructured state management.
+
+#### Structured State Management
+In structured state management, the flow's state is defined using a Pydantic `BaseModel`. Inputs must match the model's schema, and any updates will overwrite the default values.
+
+```python
+from crewai.flow.flow import Flow, listen, start
+from pydantic import BaseModel
-class ExampleFlow(Flow):
- model = "gpt-4o-mini"
+class ExampleState(BaseModel):
+ counter: int = 0
+ message: str = ""
+class StructuredExampleFlow(Flow[ExampleState]):
@start()
- def generate_city(self):
- print("Starting flow")
-
- response = completion(
- model=self.model,
- messages=[
- {
- "role": "user",
- "content": "Return the name of a random city in the world.",
- },
- ],
- )
+ def first_method(self):
+ # Implementation
- random_city = response["choices"][0]["message"]["content"]
- print(f"Random City: {random_city}")
-
- return random_city
-
- @listen(generate_city)
- def generate_fun_fact(self, random_city):
- response = completion(
- model=self.model,
- messages=[
- {
- "role": "user",
- "content": f"Tell me a fun fact about {random_city}",
- },
- ],
- )
+flow = StructuredExampleFlow()
+flow.kickoff(inputs={"counter": 10})
+```
+
+In this example, the `counter` is initialized to `10`, while `message` retains its default value.
+
+#### Unstructured State Management
+
+In unstructured state management, the flow's state is a dictionary. You can pass any dictionary to update the state.
+
+```python
+from crewai.flow.flow import Flow, listen, start
+
+class UnstructuredExampleFlow(Flow):
+ @start()
+ def first_method(self):
+ # Implementation
- fun_fact = response["choices"][0]["message"]["content"]
- return fun_fact
+flow = UnstructuredExampleFlow()
+flow.kickoff(inputs={"counter": 5, "message": "Initial message"})
+```
+Here, both `counter` and `message` are updated based on the provided inputs.
+**Note:** Ensure that inputs for structured state management adhere to the defined schema to avoid validation errors.
-flow = ExampleFlow()
-result = flow.kickoff()
+### Example Flow
-print(f"Generated fun fact: {result}")
+```python
+# Existing example code
```
In the above example, we have created a simple Flow that generates a random city using OpenAI and then generates a fun fact about that city. The Flow consists of two tasks: `generate_city` and `generate_fun_fact`. The `generate_city` task is the starting point of the Flow, and the `generate_fun_fact` task listens for the output of the `generate_city` task.
@@ -94,14 +97,14 @@ The `@listen()` decorator can be used in several ways:
1. **Listening to a Method by Name**: You can pass the name of the method you want to listen to as a string. When that method completes, the listener method will be triggered.
- ```python Code
+ ```python
@listen("generate_city")
def generate_fun_fact(self, random_city):
# Implementation
```
2. **Listening to a Method Directly**: You can pass the method itself. When that method completes, the listener method will be triggered.
- ```python Code
+ ```python
@listen(generate_city)
def generate_fun_fact(self, random_city):
# Implementation
@@ -118,7 +121,7 @@ When you run a Flow, the final output is determined by the last method that comp
Here's how you can access the final output:
-```python Code
+```python
from crewai.flow.flow import Flow, listen, start
class OutputExampleFlow(Flow):
@@ -130,18 +133,17 @@ class OutputExampleFlow(Flow):
def second_method(self, first_output):
return f"Second method received: {first_output}"
-
flow = OutputExampleFlow()
final_output = flow.kickoff()
print("---- Final Output ----")
print(final_output)
-````
+```
-``` text Output
+```text
---- Final Output ----
Second method received: Output from first_method
-````
+```
@@ -156,7 +158,7 @@ Here's an example of how to update and access the state:
-```python Code
+```python
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel
@@ -184,7 +186,7 @@ print("Final State:")
print(flow.state)
```
-```text Output
+```text
Final Output: Hello from first_method - updated by second_method
Final State:
counter=2 message='Hello from first_method - updated by second_method'
@@ -208,10 +210,10 @@ allowing developers to choose the approach that best fits their application's ne
In unstructured state management, all state is stored in the `state` attribute of the `Flow` class.
This approach offers flexibility, enabling developers to add or modify state attributes on the fly without defining a strict schema.
-```python Code
+```python
from crewai.flow.flow import Flow, listen, start
-class UntructuredExampleFlow(Flow):
+class UnstructuredExampleFlow(Flow):
@start()
def first_method(self):
@@ -230,8 +232,7 @@ class UntructuredExampleFlow(Flow):
print(f"State after third_method: {self.state}")
-
-flow = UntructuredExampleFlow()
+flow = UnstructuredExampleFlow()
flow.kickoff()
```
@@ -245,16 +246,14 @@ flow.kickoff()
Structured state management leverages predefined schemas to ensure consistency and type safety across the workflow.
By using models like Pydantic's `BaseModel`, developers can define the exact shape of the state, enabling better validation and auto-completion in development environments.
-```python Code
+```python
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel
-
class ExampleState(BaseModel):
counter: int = 0
message: str = ""
-
class StructuredExampleFlow(Flow[ExampleState]):
@start()
@@ -273,7 +272,6 @@ class StructuredExampleFlow(Flow[ExampleState]):
print(f"State after third_method: {self.state}")
-
flow = StructuredExampleFlow()
flow.kickoff()
```
@@ -307,7 +305,7 @@ The `or_` function in Flows allows you to listen to multiple methods and trigger
-```python Code
+```python
from crewai.flow.flow import Flow, listen, or_, start
class OrExampleFlow(Flow):
@@ -324,13 +322,11 @@ class OrExampleFlow(Flow):
def logger(self, result):
print(f"Logger: {result}")
-
-
flow = OrExampleFlow()
flow.kickoff()
```
-```text Output
+```text
Logger: Hello from the start method
Logger: Hello from the second method
```
@@ -346,7 +342,7 @@ The `and_` function in Flows allows you to listen to multiple methods and trigge
-```python Code
+```python
from crewai.flow.flow import Flow, and_, listen, start
class AndExampleFlow(Flow):
@@ -368,7 +364,7 @@ flow = AndExampleFlow()
flow.kickoff()
```
-```text Output
+```text
---- Logger ----
{'greeting': 'Hello from the start method', 'joke': 'What do computers eat? Microchips.'}
```
@@ -385,7 +381,7 @@ You can specify different routes based on the output of the method, allowing you
-```python Code
+```python
import random
from crewai.flow.flow import Flow, listen, router, start
from pydantic import BaseModel
@@ -416,12 +412,11 @@ class RouterFlow(Flow[ExampleState]):
def fourth_method(self):
print("Fourth method running")
-
flow = RouterFlow()
flow.kickoff()
```
-```text Output
+```text
Starting the structured flow
Third method running
Fourth method running
@@ -484,7 +479,7 @@ The `main.py` file is where you create your flow and connect the crews together.
Here's an example of how you can connect the `poem_crew` in the `main.py` file:
-```python Code
+```python
#!/usr/bin/env python
from random import randint
@@ -612,7 +607,7 @@ CrewAI provides two convenient methods to generate plots of your flows:
If you are working directly with a flow instance, you can generate a plot by calling the `plot()` method on your flow object. This method will create an HTML file containing the interactive plot of your flow.
-```python Code
+```python
# Assuming you have a flow instance
flow.plot("my_flow_plot")
```
diff --git a/src/crewai/flow/flow.py b/src/crewai/flow/flow.py
index e7231e13f5..9b6463d659 100644
--- a/src/crewai/flow/flow.py
+++ b/src/crewai/flow/flow.py
@@ -1,8 +1,20 @@
import asyncio
import inspect
-from typing import Any, Callable, Dict, Generic, List, Set, Type, TypeVar, Union
-
-from pydantic import BaseModel
+from typing import (
+ Any,
+ Callable,
+ Dict,
+ Generic,
+ List,
+ Optional,
+ Set,
+ Type,
+ TypeVar,
+ Union,
+ cast,
+)
+
+from pydantic import BaseModel, ValidationError
from crewai.flow.flow_visualizer import plot_flow
from crewai.flow.utils import get_possible_return_constants
@@ -191,10 +203,74 @@ def method_outputs(self) -> List[Any]:
"""Returns the list of all outputs from executed methods."""
return self._method_outputs
- def kickoff(self) -> Any:
+ def _initialize_state(self, inputs: Dict[str, Any]) -> None:
+ """
+ Initializes or updates the state with the provided inputs.
+
+ Args:
+ inputs: Dictionary of inputs to initialize or update the state.
+
+ Raises:
+ ValueError: If inputs do not match the structured state model.
+ TypeError: If state is neither a BaseModel instance nor a dictionary.
+ """
+ if isinstance(self._state, BaseModel):
+ # Structured state management
+ try:
+ # Define a function to create the dynamic class
+ def create_model_with_extra_forbid(
+ base_model: Type[BaseModel],
+ ) -> Type[BaseModel]:
+ class ModelWithExtraForbid(base_model): # type: ignore
+ model_config = base_model.model_config.copy()
+ model_config["extra"] = "forbid"
+
+ return ModelWithExtraForbid
+
+ # Create the dynamic class
+ ModelWithExtraForbid = create_model_with_extra_forbid(
+ self._state.__class__
+ )
+
+ # Create a new instance using the combined state and inputs
+ self._state = cast(
+ T, ModelWithExtraForbid(**{**self._state.model_dump(), **inputs})
+ )
+
+ except ValidationError as e:
+ raise ValueError(f"Invalid inputs for structured state: {e}") from e
+ elif isinstance(self._state, dict):
+ # Unstructured state management
+ self._state.update(inputs)
+ else:
+ raise TypeError("State must be a BaseModel instance or a dictionary.")
+
+ def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
+ """
+ Starts the execution of the flow synchronously.
+
+ Args:
+ inputs: Optional dictionary of inputs to initialize or update the state.
+
+ Returns:
+ The final output from the flow execution.
+ """
+ if inputs is not None:
+ self._initialize_state(inputs)
return asyncio.run(self.kickoff_async())
- async def kickoff_async(self) -> Any:
+ async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
+ """
+ Starts the execution of the flow asynchronously.
+
+ Args:
+ inputs: Optional dictionary of inputs to initialize or update the state.
+
+ Returns:
+ The final output from the flow execution.
+ """
+ if inputs is not None:
+ self._initialize_state(inputs)
if not self._start_methods:
raise ValueError("No start method defined")