-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathriskSensitiveHJB2factor.m
303 lines (269 loc) · 10.6 KB
/
riskSensitiveHJB2factor.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
% riskSensitiveHJB2factor approximates solution to risk-sensitive
% HJB equation with two factor process
%
% Reference: M.H.A. Davis and S. Lleo. Jump-diffusion risk-sensitive
% asset management I: Diffusion factor model. SIAM Journal on
% Financial Mathematics, 2:22-54, 2011.
classdef (Sealed = true) riskSensitiveHJB2factor
properties (Constant)
one = [1
1];
end
properties (GetAccess = private, SetAccess = private)
% Value function
V
% Optimal control
h
% Wealth dynamics
a_tilde
A_tilde
% Control policy
weights
isControlAdmissible
% Results from integration with respect to Levy measure
integrals
end
properties
t % Time range
x1 % Factor 1 value range
x2 % Factor 2 value range
numberOfControls
% Risk sensitivity
theta
% Factor dynamics
b
B
lambda
% Asset market dynamics
a0
A0
% Risky security dynamics
a
A
sigma
z1
z2
gamma_min
gamma_max
gamma
% Small/big jump border
R
% HJB problem
v
% Levy measure with Gaussian density
intensity
mean
covariance
end
methods
function obj = riskSensitiveHJB2factor()
end
function [V, h] = solve(obj)
% Check if input values are correct
obj.checkParameters();
dt = diff(obj.t(1:2));
dx1 = diff(obj.x1(1:2));
dx2 = diff(obj.x2(1:2));
obj.a_tilde = obj.a - obj.a0.*riskSensitiveHJB2factor.one;
obj.A_tilde = obj.A - riskSensitiveHJB2factor.one*obj.A0';
% Preallocate matrices
% Value function
obj.V = zeros(length(obj.x1) + 2, length(obj.x2) + 2, length(obj.t));
% Optimal control
obj.h = zeros(length(obj.x1) + 2, length(obj.x2) + 2, length(obj.t) - 1, 2);
% Calculate asset weights
obj.weights = linspace(-1/obj.gamma_max, 1, obj.numberOfControls + 1);
obj.weights = obj.weights(2:end);
% Find what controls are admissible
obj.isControlAdmissible = obj.findAdmissibleControls();
% Precompute integrals with respect to Levy measure
obj.integrals = obj.calculateIntegralsWithRespectToLevyMeasure();
% Apply terminal condition to value function
obj.V(:, :, length(obj.t)) = log(obj.v);
for m = length(obj.t):-1:2 % time
if m < length(obj.t)
obj.V(:, :, m) = obj.extrapolateValueFunctionBeyondBorders(dx1, dx2, m);
end
for i = 2:1:length(obj.x1) + 1 % factor 1
for j = 2:1:length(obj.x2) + 1 % factor 2
x = [obj.x1(i - 1)
obj.x2(j - 1)];
[DV, D2V] = obj.partialDerivatives(dx1, dx2, m, i, j);
[sup, optimal_h] = obj.supOperatorL(x, DV);
obj.h(i, j, m - 1, :) = optimal_h;
obj.V(i, j, m - 1) = obj.V(i, j, m) ...
+ dt*((obj.b + obj.B*x)'*(DV) ...
+ 0.5*trace(obj.lambda*(obj.lambda'*D2V)) ...
- (obj.theta/2)*(DV'*(obj.lambda*(obj.lambda'*DV))) ...
+ (obj.a0 + obj.A0'*x + sup));
fprintf('Value function for state (%.2f, %.2f) calculated at t = %.4f\n', obj.x1(i - 1), obj.x2(j - 1), obj.t(m - 1));
end
end
end
V = obj.V(2:end - 1, 2:end - 1, :);
h = obj.h(2:end - 1, 2:end - 1, :, :);
end
end % public methods
methods (Access = private)
%CHECKPARAMETERS Check that some of the input parameters are valid
% in order to solve the HJB equation.
function checkParameters(obj)
% Check that lambda*lambda' is positive definite
[R, p] = chol(obj.lambda*obj.lambda');
if p > 0
error('riskSensitiveHJB2factor:invalidInputs', 'lambda*lambda'' is not positive definite.');
end
% Check that sigma*sigma' is positive definite
[R, p] = chol(obj.sigma*obj.sigma');
if p > 0
error('riskSensitiveHJB2factor:invalidInputs', 'sigma*sigma'' is not positive definite.');
end
if obj.gamma_min <= -1 || obj.gamma_min >= 0
error('riskSensitiveHJB2factor:invalidInputs', 'gamma_min must be > -1 and < 0.');
end
if obj.gamma_max <= 0
error('riskSensitiveHJB2factor:invalidInputs', 'gamma_max must be > 0.');
end
if obj.theta == 0 || obj.theta <= -1
error('riskSensitiveHJB2factor:invalidInputs', 'theta cannot be 0 or <= -1.');
end
end
%EXTRAPOLATEVALUEFUNCTIONBEYONDBORDERS Extrapolates one extra value
% around the borders of the value function
function [val] = extrapolateValueFunctionBeyondBorders(obj, dx1, dx2, m)
[X, Y] = meshgrid(obj.x2, obj.x1);
[Xq, Yq] = meshgrid(obj.x2(1) - dx2:dx2:obj.x2(end) + dx2, obj.x1(1) - dx1:dx1:obj.x1(end) + dx1);
val = interp2(X, Y, obj.V(2:end - 1, 2:end - 1, m), Xq, Yq, 'spline');
end
%PARTIALDERIVATIVES Return first and second order partial derivatives
% with respect to the state variable
function [DV, D2V] = partialDerivatives(obj, dx1, dx2, m, i, j)
% First order partial derivative of value function
DV = [(obj.V(i + 1, j, m) - obj.V(i - 1, j, m))/(2*dx1)
(obj.V(i, j + 1, m) - obj.V(i, j - 1, m))/(2*dx2)];
% Second order partial derivative of value function (here x=x1, y=x2)
fxx = (obj.V(i + 1, j, m) - 2*obj.V(i, j, m) ...
+ obj.V(i - 1, j, m))/(dx1^2);
fyy = (obj.V(i, j + 1, m) - 2*obj.V(i, j, m) ...
+ obj.V(i, j - 1, m))/(dx2^2);
fxy = (obj.V(i + 1, j + 1, m) - obj.V(i + 1, j - 1, m) ...
- obj.V(i - 1, j + 1, m) + obj.V(i - 1, j - 1, m))/(4*dx1*dx2);
fyx = fxy;
D2V = [fxx fxy
fyx fyy];
end
%FINDADMISSIBLECONTROLS Find what control policies are admissible
function [isControlAdmissible] = findAdmissibleControls(obj)
isControlAdmissible = zeros(length(obj.weights), length(obj.weights));
for i = 1:1:length(obj.weights) % Weight for asset 1
for j = 1:1:length(obj.weights) % Weight for asset 2
h = [obj.weights(i)
obj.weights(j)];
if obj.checkControlIsAdmissible(h) == true
isControlAdmissible(i, j) = true;
else
isControlAdmissible(i, j) = false;
end
end
end
end
%CHECKCONTROLISADMISSIBLE Check if input control policy is admissible
function [isAdmissible] = checkControlIsAdmissible(obj, h)
isAdmissible = true;
for i = 1:1:length(obj.gamma(:, 1, 1))
if isAdmissible == false
break;
end
for j = 1:1:length(obj.gamma(1, :, 1))
% Condition for admissibility
if [obj.gamma(i, j, 1) obj.gamma(i, j, 2)]*h <= -1 || sum(h) > 1
isAdmissible = false;
break;
end
end
end
end
%SUPOPERATORL Calculate the maximum value and the control policy
% that produces it
function [val, optimal_h] = supOperatorL(obj, x, DV)
f = zeros(length(obj.weights), length(obj.weights));
for i = 1:1:length(obj.weights) % Weight for asset 1
for j = 1:1:length(obj.weights) % Weight for asset 2
if obj.isControlAdmissible(i, j) == true
h = [obj.weights(i)
obj.weights(j)];
f(i, j) = -0.5*(obj.theta + 1)*(h'*obj.sigma)*(obj.sigma'*h) ...
- obj.theta*(h'*(obj.sigma*(obj.lambda'*DV))) ...
+ h'*(obj.a_tilde + obj.A_tilde*x) ...
- (1/obj.theta)*obj.integrals(i, j);
else
f(i, j) = nan;
end
end
end
% Find maximum value
[val, ind] = max(f(:));
[row, column] = ind2sub(size(f), ind);
% Control policy that produces the maximum
optimal_h = [obj.weights(row)
obj.weights(column)];
end
%CALCULATEINTEGRALWITHRESPECTTOLEVYMEASURE Calculate integral with
% respect to Levy measure for every admissible control policy
function [integrals] = calculateIntegralsWithRespectToLevyMeasure(obj)
fprintf('Calculating integrals with respect to Levy measure');
integrals = zeros(length(obj.weights), length(obj.weights));
for i = 1:1:length(obj.weights) % Weight for asset 1
for j = 1:1:length(obj.weights) % Weight for asset 2
if obj.isControlAdmissible(i, j) == true
h = [obj.weights(i)
obj.weights(j)];
integrals(i, j) = obj.integralWithRespectToLevyMeasure(h);
else
integrals(i, j) = nan;
end
end
fprintf('.');
end
fprintf('\n');
end
%INTEGRALWITHRESPECTTOLEVYMEASURE Approximate integral with respect
% to Levy measure
function val = integralWithRespectToLevyMeasure(obj, h)
val = 0;
dz1 = diff(obj.z1(1:2));
dz2 = diff(obj.z2(1:2));
for i = 1:1:length(obj.z1) - 1
for j = 1:1:length(obj.z2) - 1
% Evaluate the integrand at every corner of the rectangle
corner1 = obj.evaluateIntegrand(i, j, h);
corner2 = obj.evaluateIntegrand(i + 1, j, h);
corner3 = obj.evaluateIntegrand(i, j + 1, h);
corner4 = obj.evaluateIntegrand(i + 1, j + 1, h);
val = val + 0.25*(corner1 + corner2 + corner3 + corner4)*dz1*dz2;
end
end
end
%EVALUATEINTEGRAND Evaluate integrand of integral with respect to
% Levy measure at one point of the domain
function val = evaluateIntegrand(obj, i, j, h)
aux1 = (power(1 + [obj.gamma(i, j, 1) obj.gamma(i, j, 2)]*h, -1*obj.theta) - 1);
aux2 = 0;
if (abs(obj.z1(i)) <= obj.R(1) && abs(obj.z2(j)) <= obj.R(2))
aux2 = obj.theta*[obj.gamma(i, j, 1) obj.gamma(i, j, 2)]*h;
end
z = [obj.z1(i)
obj.z2(j)];
val = (aux1 + aux2)*obj.gaussianDensity2D(z);
end
%GAUSSIANDENSITY2D Calculate the value of the 2D Gaussian density
% function at any input point
function val = gaussianDensity2D(obj, z)
if isequal(z, [0 0]')
val = 0; % Levy measure has no mass at origin
else
val = obj.intensity*(1/sqrt(power(2*pi, length(obj.mean))*det(obj.covariance)))*(exp(-0.5*(z - obj.mean)'*(obj.covariance\(z - obj.mean))));
end
end
end % private methods
end % classdef