-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
executable file
·261 lines (222 loc) · 13.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import argparse
from datetime import datetime
import os
import random
import socket
import numpy as np
import torch
from pytorch_transformers import AdamW
from torch.optim import SGD
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
import dataset
import models
import tokenization
import utils
from masker import Masker
from trainer import Trainer
import json
def get_args():
parser = argparse.ArgumentParser()
# Task
parser.add_argument('--evaluate', action='store_true', help='Evaluate model on validation set')
parser.add_argument('--test', action='store_true', help='Test model on test set')
parser.add_argument('--test_name', type=str, default='', help='Test to be done')
parser.add_argument('--test_options', type=str, default='', help='Test options depend on test')
parser.add_argument('--sigurdsson', action='store_true', help='Use Deepmind\'s (Sigurdsson et al.) model')
# Model
parser.add_argument('--two_heads_modality', action='store_true',
help='The head that goes to the cross-modal loss is different than the modality-specific loss')
parser.add_argument('--pretrained_cnn', action='store_true',
help="Use pretrained CNN to embed images. Overwritten by --resume")
# Training
parser.add_argument('--num_epochs', type=int, default=100, help='Number of global training epochs')
parser.add_argument('--batch_size', type=int, default=64, help='Batch size for the outer loop')
# Paths
parser.add_argument('--name', type=str, default='', help='Name of the training')
parser.add_argument('--resume_name', type=str, default='', help='Name of the resumed training')
parser.add_argument('--resume', action='store_true', help='Load best model from checkpoint')
parser.add_argument('--dataset_path', type=str, help='Path to the dataset')
parser.add_argument('--tokenizer_path', type=str, help='Path to the pretrained tokenizer. Only for fairseq')
parser.add_argument('--dataset_info_path', type=str,
help='Directory with computed info about dataset and tokenizer')
parser.add_argument('--checkpoint_dir', type=str, default='', help='Checkpoints directory')
parser.add_argument('--runs_dir', default='/path/to/your/runs', help='Path to tensorboard information')
parser.add_argument('--results_dir', default='/path/to/your/results', help='Path to miscellaneous results')
parser.add_argument('--config_arch', default='config', help='Transformers config file')
parser.add_argument('--config_data', default='all_lang', help='Languages to work with')
# Dataset parameters
parser.add_argument('--image_size', type=int, default=224, help='Image size')
parser.add_argument('--max_txt_seq_len', type=int, default=50, help='Maximum text length')
parser.add_argument('--tokenizer_type', type=str, default='fairseq', choices=['fairseq', 'huggingface'],
help='Which tokenizer to use (see tokenization.py)')
parser.add_argument('--not_use_images', action='store_true', help='Do not input images to the model')
parser.add_argument('--augment_image', action='store_true', help='Dataset returns two augmented images')
parser.add_argument('--language_split', type=str, default='training', choices={'training', 'testing'},
help='Which languages to use, from the .json config file')
# Optimization
parser.add_argument('--lambda_visual_loss', type=float, default=1.0, help='Weight for the visual loss')
parser.add_argument('--lambda_xlang_loss', type=float, default=1.0, help='Weight for the cross-language loss')
parser.add_argument('--lambda_lm_loss', type=float, default=1.0, help='Weight for the cross-language loss')
parser.add_argument('--lambda_xm_loss', type=float, default=1.0, help='Weight for the cross-language loss')
parser.add_argument('--lambda_orthogonality_loss', type=float, default=1.0,
help='Weight for the orthogonality constraint for the AdaptLayer in Sigurdsson\'s method')
parser.add_argument('--alpha_xm', action='store_true', help='Use xm similarity to create alphas')
parser.add_argument('--learning_rate', type=float, default=1e-3, help='Learning rate for the outer loop')
parser.add_argument('--workers', type=int, default=4, help='Num parallel workers')
parser.add_argument('--fp16', action='store_true', help='Whether to use 16-bit float precision instead of 32-bit')
parser.add_argument('--opt_level', default='O1', help='Optimization level for fp16 training')
parser.add_argument('--local_rank', type=int, default=-1, help='Local rank for distributed training on gpus')
parser.add_argument('--momentum_bn', type=float, default=0.1, help='Batch norm momentum')
# Masking probabilities
parser.add_argument('--prob_predict_token', type=float, default=1 / 6, help='prob_predict_token. See dataset')
parser.add_argument('--p_mask', type=float, default=0.8, help='p_mask. See masker')
parser.add_argument('--p_clobber_other_txt', type=float, default=0, help='p_clobber_other_txt. See masker')
# Other
parser.add_argument('--debug', action='store_true', help='Debug (no writing to disk at all)')
parser.add_argument('--resume_latest', action='store_true', help='Resume latest checkpoint instead of best one')
parser.add_argument('--output_attentions', action='store_true', help='Model output attention values')
parser.add_argument('--resume_epoch', type=int, default=-1, help='Epoch to resume')
parser.add_argument('--resume_but_restart', action='store_true',
help='Load model from another checkpoint, but do not continue with that execution')
parser.add_argument('--seed', type=int, default=0, help='Random seed for initialization')
parser.add_argument('--print_freq', type=int, default=1, help='Print/save loss every print_freq batches')
args = parser.parse_args()
assert not (args.resume_latest and not args.resume), 'To resume the last model, "--resume" has to be also True'
assert not (args.resume_latest and args.resume_epoch >= 0), 'Either resume latest, or resume specific epoch'
assert not ((args.lambda_visual_loss > 0 or args.lambda_xlang_loss > 0) and args.batch_size == 1) or args.test, \
'With batch size of 1, there will not be negatives for the visual or xlang loss'
assert not ((args.lambda_visual_loss > 0 or args.lambda_xm_loss > 0) and args.not_use_images), 'Really?'
assert not (args.lambda_visual_loss > 0 and not args.augment_image) or args.test, \
'For the visual loss we need augmented images'
assert not (args.alpha_xm and args.lambda_xm_loss <= 0), "The xm loss is needed to add alpha_xm to the xlang loss"
current_time = datetime.now().strftime('%Y%m%d_%H%M%S')
if not (args.resume and not args.resume_but_restart):
assert args.name is not None and len(args.name) > 0
args.name = args.name + '_' + current_time + '_' + socket.gethostname()
else:
assert args.resume_name is not None and len(args.resume_name) > 0
args.name = args.resume_name
if not args.test:
if args.sigurdsson:
assert not args.two_heads_modality and args.lambda_lm_loss == 0 and args.lambda_visual_loss == 0 \
and args.lambda_xlang_loss == 0
assert args.p_clobber_other_txt == 0 and args.prob_predict_token == 0 and args.p_mask == 0
else:
assert args.lambda_orthogonality_loss == 0
args.checkpoint_path = os.path.join(args.checkpoint_dir, args.name)
args.checkpoint_path_load_from = os.path.join(args.checkpoint_dir, args.resume_name)
args.results_path = os.path.join(args.results_dir, args.name)
return args
def main():
args = get_args()
# Fix randomness
seed = args.seed
torch.cuda.manual_seed_all(seed)
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
if not args.debug:
os.makedirs(args.checkpoint_path, exist_ok=True)
os.makedirs(args.results_path, exist_ok=True)
if args.local_rank == -1:
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.n_gpu = args.step_n_gpus = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
args.device = torch.device("cuda", args.local_rank)
args.n_gpu = 1
torch.distributed.init_process_group(backend='nccl', init_method='env://')
args.step_n_gpus = torch.distributed.get_world_size()
writer = SummaryWriter(log_dir=os.path.join(args.runs_dir, args.name) if not (
args.debug or args.test or args.evaluate) else '/tmp') if args.local_rank <= 0 else None
# ---------------------------- Prepare dataset ----------------------------- #
if args.local_rank <= 0:
print('Preparing dataset')
# The "subsplits" (either ['train', 'val'] or ['test']) indicate how we are going to subsplit the language splits
if args.test and not ('extract_features' in args.test_name and args.test_options != 'test'):
subsplits = ['test']
else:
subsplits = ['train', 'val']
dataset_dict = {}
for subsplit in subsplits:
# No need to randomize sigurdsson validation
randomize = subsplit != 'test' and (subsplit != 'val' or (not args.test and not args.sigurdsson))
dataset_dict[subsplit] = dataset.MultipleDatasets(
dataset_path=args.dataset_path,
img_size=args.image_size, subsplit=subsplit, max_txt_seq_len=args.max_txt_seq_len,
dataset_info_path=args.dataset_info_path, config_data=args.config_data, augment_image=args.augment_image,
prob_predict_token=args.prob_predict_token, language_split=args.language_split,
not_use_images=args.not_use_images, randomize=randomize)
list_txt_files = lambda: [txt_file for subsplit in subsplits for txt_file in dataset_dict[subsplit].list_txt_files]
tokenizer = tokenization.create_tokenizer(args.tokenizer_type, dataset_info_path=args.dataset_info_path,
config_data=args.config_data, list_txt_files=list_txt_files)
for subsplit in subsplits:
dataset_dict[subsplit].tokenizer = tokenizer
def get_sampler(_subsplit):
_sampler = None
_shuffle = _subsplit == 'train'
if args.local_rank != -1:
_sampler = DistributedSampler(dataset_dict[_subsplit], shuffle=_shuffle)
_shuffle = _shuffle and (_sampler is None)
return _sampler, _shuffle
loader_dict = {}
for subsplit in subsplits:
sampler, shuffle = get_sampler(subsplit)
loader_dict[subsplit] = DataLoader(dataset_dict[subsplit], batch_size=args.batch_size, sampler=sampler,
shuffle=shuffle, num_workers=args.workers, collate_fn=utils.collate_fn,
pin_memory=True, drop_last=True)
# ---------------------------- Prepare model ----------------------------- #
if args.local_rank <= 0:
print('Preparing model')
config_from = args.checkpoint_path_load_from if args.resume else 'config/architecture'
list_lang = None
if args.sigurdsson:
list_lang = dataset_dict[subsplits[0]].language_to_id
config_name, lang_split = args.config_data, args.language_split
with open(f'config/data/{args.config_data}.json') as json_file:
word2vec_from = json.load(json_file)['word2vec_from']
if word2vec_from != "":
config_name, lang_split = word2vec_from
pretrain_path = os.path.join(args.dataset_info_path, f'word2vec_weights_{config_name}_{lang_split}lang.pth')
model = models.SigurdssonModel(config_from, list_lang, fn_cfg=args.config_arch, pretrained_cnn=args.pretrained_cnn,
freeze_image=False, pretrain_path=pretrain_path).to(args.device)
else:
model = models.GlobetrotterModel(config_from, fn_cfg=args.config_arch, tok=tokenizer,
pretrained_cnn=args.pretrained_cnn, momentum_bn=args.momentum_bn,
output_attentions=args.output_attentions, freeze_image=False).to(args.device)
optimizer = AdamW(model.parameters(), lr=args.learning_rate, correct_bias=False, eps=1e-4)
if args.resume:
fn = f'checkpoint_{args.resume_epoch}.pth' if args.resume_epoch >= 0 else 'checkpoint.pth'
load_best = not (args.resume_latest or args.resume_epoch >= 0)
epoch, global_step = utils.load_checkpoint(model, optimizer if not args.test else None,
args.checkpoint_path_load_from, load_best=load_best, fn=fn,
strict=False, list_lang=list_lang)
if args.resume_but_restart:
epoch = global_step = -1
else:
epoch = global_step = -1
if args.local_rank != -1:
from torch.nn.parallel import DistributedDataParallel as DDP
model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True)
args.parallel = 'ddp'
elif args.n_gpu > 1:
model = torch.nn.DataParallel(model)
args.parallel = 'dp'
else:
args.parallel = 'none'
# ---------------------------- Prepare trainer ----------------------------- #
if args.local_rank <= 0:
print('Preparing trainer')
masker = Masker(tokenizer, p_mask=args.p_mask, p_clobber_other_txt=args.p_clobber_other_txt)
trainer = Trainer(args, model, loader_dict, optimizer, epoch, global_step, writer, masker)
# ---------------------------- Run ----------------------------- #
if args.evaluate:
trainer.run_epoch(epoch=None, train=False)
elif args.test:
trainer.test(args.test_name)
else:
trainer.train()
if __name__ == '__main__':
main()