-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathexample2.m
139 lines (117 loc) · 5.63 KB
/
example2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
%% Example 2: Analyze different splits of runs in a session
%% Download dataset (if necessary) and add GLMdenoise to the MATLAB path
setup;
%% Load in the data
% Load in the data
load('exampledataset.mat');
% Check the workspace
whos
%%
%% Split session into two halves and analyze each half separately
% In some circumstances, you may want to split the runs acquired in a given
% session into groups and analyze each group separately. For example, you might
% want to train a classifier on data from some runs and then test the
% classifer on data from other runs. Here we go through an example where
% we split a session of data (10 runs) into halves and analyze each half separately.
% First, we define the way the runs are to be split. In the first
% iteration, we will analyze the odd runs. In the second iteration,
% we will analyze the even runs.
splits = {[1:2:10] [2:2:10]};
% For each split, we will analyze the data two ways. First, we analyze the data
% using no denoising (REGULAR). Then, we analyze the data using denoising (DENOISE).
% (To achieve no denoising, we set the number of PCs to try to zero.)
clear resultsREGULAR resultsDENOISE;
for p=1:length(splits)
ix = splits{p};
% analyze using no denoising
resultsREGULAR(p) = GLMdenoisedata(design(ix),data(ix),stimdur,tr, ...
[],[],struct('numpcstotry',0), ...
sprintf('example2figures_REGULAR_split%d',p));
% analyze using denoising
resultsDENOISE(p) = GLMdenoisedata(design(ix),data(ix),stimdur,tr, ...
[],[],[], ...
sprintf('example2figures_DENOISE_split%d',p));
end
%%
% The default mode of operation involves estimating an HRF from the data (in each
% call to GLMdenoisedata). Let's inspect the HRF results across the two splits of
% the data. The reason this may be important is that the beta weights that are
% estimated in the model are scale factors that are applied to the HRF estimate,
% and if the HRF estimates are highly different across the splits, that may be some
% reason for concern. In this case, we find that the HRF estimate is fairly
% similar across the splits. (An alternative strategy is to just fix the HRF to
% a canonical HRF and use that for each split.)
figure; hold on;
hrf1 = resultsREGULAR(1).modelmd{1};
hrf2 = resultsREGULAR(2).modelmd{1};
plot(0:tr:tr*(length(hrf1)-1),hrf1,'r-');
plot(0:tr:tr*(length(hrf2)-1),hrf2,'b-');
xlabel('Time from condition onset (s)');
ylabel('Response');
title('HRF estimate across splits (red = odd runs, blue = even runs)');
%%
% Let's now examine the stability of beta weights across the data splits.
% First, we choose a subset of the voxels.
ix = find(resultsREGULAR(1).R2 > 10 & resultsREGULAR(1).meanvol > 500);
% Then, we extract the beta weights corresponding to one of the
% conditions (condition 10). Notice that we have four sets of beta weights.
% This is because for each of the two splits of the data, we have two
% beta weight estimates (one using no denoising, one using denoising).
beta1REGULAR = subscript(squish(resultsREGULAR(1).modelmd{2},3),{ix 10});
beta2REGULAR = subscript(squish(resultsREGULAR(2).modelmd{2},3),{ix 10});
beta1DENOISE = subscript(squish(resultsDENOISE(1).modelmd{2},3),{ix 10});
beta2DENOISE = subscript(squish(resultsDENOISE(2).modelmd{2},3),{ix 10});
% Visualize the results.
figure;
set(gcf,'Units','points','Position',[100 100 800 400]);
subplot(1,2,1); hold on;
scatter(beta1REGULAR,beta2REGULAR,'r.');
axissquarify;
xlabel('BOLD signal (% change), odd runs');
ylabel('BOLD signal (% change), even runs');
title(sprintf('No denoising (r=%.3f)',corr(beta1REGULAR,beta2REGULAR)));
subplot(1,2,2); hold on;
scatter(beta1DENOISE,beta2DENOISE,'r.');
axissquarify;
xlabel('BOLD signal (% change), odd runs');
ylabel('BOLD signal (% change), even runs');
title(sprintf('Denoising (r=%.3f)',corr(beta1DENOISE,beta2DENOISE)));
%%
%% Split session into individual runs and analyze each run separately
% In some circumstances, you may wish to derive beta weights from individual
% runs in a session. Here we go through an example where we analyze each
% of the runs in a session separately. Note that denoising cannot be applied
% if there is only a single run to work with (since cross-validation is performed
% across runs). So, instead of calling GLMdenoisedata.m, we will call
% GLMestimatemodel.m. Calling GLMestimatemodel.m also has the benefit that
% we will avoid some of the overhead involved in GLMdenoisedata.m.
% First, we define the ways the runs are to be split. Every run will be
% analyzed separately.
splits = num2cell(1:10);
% For demonstration purposes, we will adopt the strategy of assuming a fixed HRF
% in the analysis of each run. Here we compute a canonical HRF.
hrf = getcanonicalhrf(stimdur,tr)';
% Now we loop over each run, using GLMestimatemodel.m to fit a GLM to the data.
% Notice that we specify that we want to use an assumed HRF. Also, the "0"
% indicates that we just want to fit the data (no bootstrapping nor cross-validation).
clear resultsIND;
for p=1:length(splits)
ix = splits{p};
resultsIND(p) = GLMestimatemodel(design(ix),data(ix),stimdur,tr,'assume',hrf,0);
end
%%
% Let's examine the beta weights from each run for an example voxel.
xx = 46; yy = 24; zz = 1;
figure; hold on;
set(gcf,'Units','points','Position',[100 100 700 250]);
betas = [];
for p=1:length(resultsIND)
betas(p,:) = flatten(resultsIND(p).modelmd{2}(xx,yy,zz,:));
plot(betas(p,:),'b-');
end
plot(mean(betas,1),'k-','LineWidth',3);
straightline(0,'h','k-');
xlabel('Condition number');
ylabel('BOLD signal (% change)');
title('Beta weights (blue = estimates from individual runs, black = mean across estimates)');
%%