-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathfeatures.pyx
235 lines (195 loc) · 7.38 KB
/
features.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import numpy as np
import Image
cimport numpy as np
cimport cython
cdef extern from "math.h":
double sqrt(double i)
double fabs(double i)
double floor(double i)
cpdef hog(im, int sbin = 8):
"""
Computes a histogram of oriented gradient features.
Adopted from Pedro Felzenszwalb's features.cc
"""
cdef np.ndarray[np.double_t, ndim=3] data, feat
cdef np.ndarray[np.double_t, ndim=1] hist, norm
cdef int blocks0, blocks1
cdef int out0, out1, out2
cdef int visible0, visible1
cdef double dy, dx, v
cdef double dy2, dx2, v2
cdef double dy3, dx3, v3
cdef double best_dot, dot
cdef int best_o
cdef double xp, yp, vx0, vy0, vx1, vy1
cdef int ixp, iyp
cdef double n1, n2, n3, n4, t1, t2, t3, t4, h1, h2, h3, h4
cdef int p
cdef np.ndarray[np.double_t, ndim=1] uu
uu = np.array([ 1.0000, 0.9397, 0.7660, 0.500, 0.1736,
-0.1736, -0.5000, -0.7660, -0.9397])
cdef np.ndarray[np.double_t, ndim=1] vv
vv = np.array([0.0000, 0.3420, 0.6428, 0.8660, 0.9848,
0.9848, 0.8660, 0.6428, 0.3420])
cdef double eps = 0.0001 # to avoid division by 0
cdef unsigned int cc0, cc1, cc2
cdef int x, y, o, q
cdef int dstptr, srcptr
width, height = im.size
blocks0 = height / sbin
blocks1 = width / sbin
out0 = blocks0 - 2
out1 = blocks1 - 2
out2 = 9 + 4
visible0 = blocks0 * sbin
visible1 = blocks1 * sbin
data = np.asarray(im, dtype=np.double)
cc0 = <unsigned int>(0)
cc1 = <unsigned int>(1)
cc2 = <unsigned int>(2)
hist = np.zeros(shape=(blocks0 * blocks1 * 9), dtype=np.double)
norm = np.zeros(shape=(blocks0 * blocks1), dtype=np.double)
feat = np.zeros(shape=(out0, out1, out2), dtype=np.double)
for x from 1 <= x < visible1 - 1:
for y from 1 <= y < visible0 - 1:
dy = data[y + 1, x, cc0] - data[y - 1, x, cc0]
dx = data[y, x + 1, cc0] - data[y, x - 1, cc0]
v = dx * dx + dy * dy
dy2 = data[y + 1, x, cc1] - data[y - 1, x, cc1]
dx2 = data[y, x + 1, cc1] - data[y, x - 1, cc1]
v2 = dx2 * dx2 + dy2 * dy2
dy3 = data[y + 1, x, cc2] - data[y - 1, x, cc2]
dx3 = data[y, x + 1, cc2] - data[y, x - 1, cc2]
v3 = dx3 * dx3 + dy3 * dy3
if v2 > v: # pick channel with strongest gradient
v = v2
dx = dx2
dy = dy2
if v3 > v:
v = v3
dx = dx3
dy = dy3
# snap to one of 9 orientations
best_dot = 0.
best_o = 0
for o from 0 <= o < 9:
dot = fabs(uu[o] * dx + vv[o] * dy)
if dot > best_dot:
best_dot = dot
best_o = o
# add to 4 histograms around pixel using linear interpolation
xp = (<double>(x) + 0.5) / <double>(sbin) - 0.5
yp = (<double>(y) + 0.5) / <double>(sbin) - 0.5
ixp = <int>floor(xp)
iyp = <int>floor(yp)
vx0 = xp - ixp
vy0 = yp - iyp
vx1 = 1.0 - vx0
vy1 = 1.0 - vy0
v = sqrt(v)
if ixp >= 0 and iyp >= 0:
hist[ixp * blocks0 + iyp + best_o*blocks0*blocks1] += vx1 * vy1 * v
if ixp + 1 < blocks1 and iyp >= 0:
hist[(ixp + 1) * blocks0 + iyp + best_o*blocks0*blocks1] += vx0 * vy1 * v
if ixp >= 0 and iyp + 1 < blocks0:
hist[ixp * blocks0 + (iyp + 1) + best_o*blocks0*blocks1] += vx1 * vy0 * v
if ixp + 1 < blocks1 and iyp + 1 < blocks0:
hist[(ixp + 1) * blocks0 + (iyp + 1) + best_o * blocks0 * blocks1] += vx0 * vy0 * v
# compute energy in each block by summing over orientations
for o from 0 <= o < 9:
for q from 0 <= q < blocks0 * blocks1:
norm[q] += hist[o * blocks0 * blocks1 + q] * hist[o * blocks0 * blocks1 + q]
# compute normalized values
for x from 0 <= x < out1:
for y from 0 <= y < out0:
p = (x+1) * blocks0 + y + 1
n1 = 1.0 / sqrt(norm[p] + norm[p+1] + norm[p+blocks0] + norm[p+blocks0+1] + eps)
p = (x+1) * blocks0 + y
n2 = 1.0 / sqrt(norm[p] + norm[p+1] + norm[p+blocks0] + norm[p+blocks0+1] + eps)
p = x * blocks0 + y + 1
n3 = 1.0 / sqrt(norm[p] + norm[p+1] + norm[p+blocks0] + norm[p+blocks0+1] + eps)
p = x * blocks0 + y
n4 = 1.0 / sqrt(norm[p] + norm[p+1] + norm[p+blocks0] + norm[p+blocks0+1] + eps)
t1 = 0
t2 = 0
t3 = 0
t4 = 0
srcptr = (x+1) * blocks0 + y + 1
for o from 0 <= o < 9:
h1 = hist[srcptr] * n1
h2 = hist[srcptr] * n2
h3 = hist[srcptr] * n3
h4 = hist[srcptr] * n4
# for some reason, gcc will not automatically inline
# the min function here, so we just do it ourselves
# for impressive speedups
if h1 > 0.2:
h1 = 0.2
if h2 > 0.2:
h2 = 0.2
if h3 > 0.2:
h3 = 0.2
if h4 > 0.2:
h4 = 0.2
feat[y, x, o] = 0.5 * (h1 + h2 + h3 + h4)
t1 += h1
t2 += h2
t3 += h3
t4 += h4
srcptr += blocks0 * blocks1
feat[y, x, 9] = 0.2357 * t1
dstptr += out0 * out1
feat[y, x, 10] = 0.2357 * t2
dstptr += out0 * out1
feat[y, x, 11] = 0.2357 * t3
dstptr += out0 * out1
feat[y, x, 12] = 0.2357 * t4
return feat
cpdef hogpad(np.ndarray[np.double_t, ndim=3] hog):
cdef np.ndarray[np.double_t, ndim=3] out
cdef int i, j, k
cdef int w = hog.shape[0], h = hog.shape[1], z = hog.shape[2]
out = np.zeros((w + 2, h + 2, z))
for i in range(w):
for j in range(h):
for k in range(z):
out[i+1, j+1, k] = hog[i, j, k]
return out
cpdef rgbhist(im, int binsize = 8):
"""
Computes an RGB color histogram with a binsize.
"""
cdef int w = im.size[0], h = im.size[1]
cdef np.ndarray[np.uint8_t, ndim=3] data = np.asarray(im)
cdef np.ndarray[np.double_t, ndim=1] hist
hist = np.zeros(binsize * binsize * binsize)
for i from 0 <= i < w:
for j from 0 <= j < h:
bin = (<int>data[j,i,0]) / (256/binsize)
bin += (<int>data[j,i,1]) / (256/binsize) * binsize
bin += (<int>data[j,i,2]) / (256/binsize) * binsize * binsize
hist[bin] += 1
return hist
cpdef rgbmean(im):
"""
Computes mean and covariances of RGB colors.
"""
cdef int w = im.size[0], h = im.size[1]
cdef double r, g, b
cdef np.ndarray[np.uint8_t, ndim=3] data = np.asarray(im)
cdef np.ndarray[np.double_t, ndim=1] out = np.zeros(9)
for i in range(w):
for j in range(h):
r = data[j, i, 0] / 255.
g = data[j, i, 1] / 255.
b = data[j, i, 2] / 255.
out[0] += r
out[1] += g
out[2] += b
out[3] += r * r
out[4] += r * g
out[5] += r * b
out[6] += g * g
out[7] += g * b
out[8] += b * b
return out / (w * h)