-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_outputs.R
989 lines (920 loc) · 58.7 KB
/
process_outputs.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
source('./src/dependencies.R')
options(scipen=999)
###################################################################
load("./output/continuous_sim_5000_200_2,8,32,64,128.RData");load("./output/bias_continuous.RData");load("./output/cs_bias_continuous.RData")
###################################################################
# Table 1
n <- 5000
data.frame(
Estimator = c('Ensemble', 'Boosted trees', 'Random forest', 'KNN', 'LASSO', 'GLM'),
EY1 = c(
mean(unlist(sim_out['Y_1_stacked',])),
mean(unlist(sim_out['Y_1_boosted_tree',])),
mean(unlist(sim_out['Y_1_random_forest',])),
mean(unlist(sim_out['Y_1_knn',])),
mean(unlist(sim_out['Y_1_lasso',])),
mean(unlist(sim_out['Y_1_glm',]))
),
seY1 = c(
mean(sqrt(unlist(sim_out['var_Y_1_stacked',])/n)),
mean(sqrt(unlist(sim_out['var_Y_1_boosted_tree',])/n)),
mean(sqrt(unlist(sim_out['var_Y_1_random_forest',])/n)),
mean(sqrt(unlist(sim_out['var_Y_1_knn',])/n)),
mean(sqrt(unlist(sim_out['var_Y_1_lasso',])/n)),
mean(sqrt(unlist(sim_out['var_Y_1_glm',])/n))
),
BiasEY1 = c(
bias_out$bias_stacked$Y_1,
bias_out$bias_boosted_tree$Y_1,
bias_out$bias_random_forest$Y_1,
bias_out$bias_knn$Y_1,
bias_out$bias_lasso$Y_1,
bias_out$bias_glm$Y_1
),
CSBiasa1 = c(
cs_bias_out$cs_bias_stacked$Y_1,
cs_bias_out$cs_bias_boosted_tree$Y_1,
cs_bias_out$cs_bias_random_forest$Y_1,
cs_bias_out$cs_bias_knn$Y_1,
cs_bias_out$cs_bias_lasso$Y_1,
cs_bias_out$cs_bias_glm$Y_1
),
EY0 = c(
mean(unlist(sim_out['Y_0_stacked',])),
mean(unlist(sim_out['Y_0_boosted_tree',])),
mean(unlist(sim_out['Y_0_random_forest',])),
mean(unlist(sim_out['Y_0_knn',])),
mean(unlist(sim_out['Y_0_lasso',])),
mean(unlist(sim_out['Y_0_glm',]))
),
seY0 = c(
mean(sqrt(unlist(sim_out['var_Y_0_stacked',])/n)),
mean(sqrt(unlist(sim_out['var_Y_0_boosted_tree',])/n)),
mean(sqrt(unlist(sim_out['var_Y_0_random_forest',])/n)),
mean(sqrt(unlist(sim_out['var_Y_0_knn',])/n)),
mean(sqrt(unlist(sim_out['var_Y_0_lasso',])/n)),
mean(sqrt(unlist(sim_out['var_Y_0_glm',])/n))
),
BiasEY0 = c(
bias_out$bias_stacked$Y_0,
bias_out$bias_boosted_tree$Y_0,
bias_out$bias_random_forest$Y_0,
bias_out$bias_knn$Y_0,
bias_out$bias_lasso$Y_0,
bias_out$bias_glm$Y_0
),
CSBiasa0 = c(
cs_bias_out$cs_bias_stacked$Y_0,
cs_bias_out$cs_bias_boosted_tree$Y_0,
cs_bias_out$cs_bias_random_forest$Y_0,
cs_bias_out$cs_bias_knn$Y_0,
cs_bias_out$cs_bias_lasso$Y_0,
cs_bias_out$cs_bias_glm$Y_0
)
) %>% knitr::kable(format='latex', booktabs = T, linesep = "")
# Table 2
n_sims <- 200
data.frame(
Estimator = c('Ensemble', 'Boosted trees', 'Random forest', 'KNN', 'LASSO', 'GLM',
'Ensemble', 'Boosted trees', 'Random forest', 'KNN', 'LASSO', 'GLM'),
CSBiasa1 = c(
cs_bias_out$cs_bias_stacked$Y_1,
cs_bias_out$cs_bias_boosted_tree$Y_1,
cs_bias_out$cs_bias_random_forest$Y_1,
cs_bias_out$cs_bias_knn$Y_1,
cs_bias_out$cs_bias_lasso$Y_1,
cs_bias_out$cs_bias_glm$Y_1,
cs_bias_out$cs_bias_stacked$Y_1,
cs_bias_out$cs_bias_boosted_tree$Y_1,
cs_bias_out$cs_bias_random_forest$Y_1,
cs_bias_out$cs_bias_knn$Y_1,
cs_bias_out$cs_bias_lasso$Y_1,
cs_bias_out$cs_bias_glm$Y_1
),
IF22oraclea1 = c(
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'oracle4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'oracle4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'oracle4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'oracle4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'oracle4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'oracle4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'oracle9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'oracle9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'oracle9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'oracle9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'oracle9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'oracle9']))
),
IF22oraclea1_sd = c(
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'oracle4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'oracle4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'oracle4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'oracle4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'oracle4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'oracle4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'oracle9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'oracle9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'oracle9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'oracle9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'oracle9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'oracle9'])),')')
),
IF22tra1 = c(
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'tr4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'tr4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'tr4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'tr4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'tr4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'tr4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'tr9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'tr9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'tr9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'tr9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'tr9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'tr9']))
),
IF22tra1_sd = c(
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'tr4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'tr4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'tr4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'tr4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'tr4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'tr4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'tr9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'tr9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'tr9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'tr9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'tr9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'tr9'])),')')
),
IF22nlshrinka1 = c(
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'nlshrink4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'nlshrink4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'nlshrink4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'nlshrink4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'nlshrink4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'nlshrink4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'nlshrink9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'nlshrink9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'nlshrink9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'nlshrink9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'nlshrink9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'nlshrink9']))
),
IF22nlshrinka1_sd = c(
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'nlshrink4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'nlshrink4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'nlshrink4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'nlshrink4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'nlshrink4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'nlshrink4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'nlshrink9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'nlshrink9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'nlshrink9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'nlshrink9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'nlshrink9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'nlshrink9'])),')')
),
IF22esta1 = c(
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'est4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'est4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'est4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'est4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'est4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'est4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'est9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'est9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'est9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'est9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'est9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'est9']))
),
IF22esta1_sd = c(
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'est4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'est4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'est4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'est4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'est4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'est4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'est9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'est9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'est9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'est9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'est9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'est9'])),')')
)
) %>% knitr::kable(format='latex', booktabs = T, linesep = "")
# Table 3
n_sims <- 200
data.frame(
Estimator = c('Ensemble', 'Boosted trees', 'Random forest', 'KNN', 'LASSO', 'GLM',
'Ensemble', 'Boosted trees', 'Random forest', 'KNN', 'LASSO', 'GLM'),
CSBiasa0 = c(
cs_bias_out$cs_bias_stacked$Y_0,
cs_bias_out$cs_bias_boosted_tree$Y_0,
cs_bias_out$cs_bias_random_forest$Y_0,
cs_bias_out$cs_bias_knn$Y_0,
cs_bias_out$cs_bias_lasso$Y_0,
cs_bias_out$cs_bias_glm$Y_0,
cs_bias_out$cs_bias_stacked$Y_0,
cs_bias_out$cs_bias_boosted_tree$Y_0,
cs_bias_out$cs_bias_random_forest$Y_0,
cs_bias_out$cs_bias_knn$Y_0,
cs_bias_out$cs_bias_lasso$Y_0,
cs_bias_out$cs_bias_glm$Y_0
),
IF22oraclea0 = c(
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'oracle4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'oracle4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'oracle4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'oracle4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'oracle4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'oracle4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'oracle9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'oracle9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'oracle9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'oracle9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'oracle9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'oracle9']))
),
IF22oraclea0_sd = c(
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'oracle4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'oracle4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'oracle4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'oracle4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'oracle4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'oracle4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'oracle9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'oracle9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'oracle9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'oracle9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'oracle9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'oracle9'])),')')
),
IF22tra0 = c(
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'tr4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'tr4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'tr4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'tr4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'tr4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'tr4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'tr9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'tr9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'tr9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'tr9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'tr9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'tr9']))
),
IF22tra0_sd = c(
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'tr4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'tr4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'tr4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'tr4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'tr4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'tr4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'tr9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'tr9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'tr9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'tr9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'tr9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'tr9'])),')')
),
IF22nlshrinka0 = c(
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'nlshrink4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'nlshrink4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'nlshrink4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'nlshrink4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'nlshrink4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'nlshrink4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'nlshrink9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'nlshrink9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'nlshrink9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'nlshrink9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'nlshrink9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'nlshrink9']))
),
IF22nlshrinka0_sd = c(
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'nlshrink4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'nlshrink4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'nlshrink4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'nlshrink4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'nlshrink4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'nlshrink4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'nlshrink9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'nlshrink9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'nlshrink9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'nlshrink9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'nlshrink9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'nlshrink9'])),')')
),
IF22esta0 = c(
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'est4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'est4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'est4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'est4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'est4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'est4'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'est9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'est9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'est9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'est9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'est9'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'est9']))
),
IF22esta0_sd = c(
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'est4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'est4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'est4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'est4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'est4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'est4'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'est9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'est9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'est9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'est9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'est9'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'est9'])),')')
)
) %>% knitr::kable(format='latex', booktabs = T, linesep = "")
# Figure 2
n_sims <- 200
graph_tr_Y_1 <-
data.frame(k=rep(c(21,81,321,641), 3),
Estimator=c(rep('Ensemble', 4),
rep('GLM', 4),
rep('LASSO', 4)
),
Estimate=c(rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,c('tr1', 'tr2', 'tr3', 'tr4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,c('tr1', 'tr2', 'tr3', 'tr4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,c('tr1', 'tr2', 'tr3', 'tr4')]))
))
graph_shrinkage_Y_1 <-
data.frame(k=rep(c(21,81,321,641), 3),
Estimator=c(rep('Ensemble', 4),
rep('GLM', 4),
rep('LASSO', 4)
),
Estimate=c(rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,c('nlshrink1', 'nlshrink2', 'nlshrink3', 'nlshrink4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,c('nlshrink1', 'nlshrink2', 'nlshrink3', 'nlshrink4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,c('nlshrink1', 'nlshrink2', 'nlshrink3', 'nlshrink4')]))
))
graph_est_Y_1 <-
data.frame(k=rep(c(21,81,321,641), 3),
Estimator=c(rep('Ensemble', 4),
rep('GLM', 4),
rep('LASSO', 4)
),
Estimate=c(rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,c('est1', 'est2', 'est3', 'est4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,c('est1', 'est2', 'est3', 'est4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,c('est1', 'est2', 'est3', 'est4')]))
))
graph_oracle_Y_1 <-
data.frame(k=rep(c(21,81,321,641), 3),
Estimator=c(rep('Ensemble', 4),
rep('GLM', 4),
rep('LASSO', 4)
),
Estimate=c(rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,c('oracle1', 'oracle2', 'oracle3', 'oracle4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,c('oracle1', 'oracle2', 'oracle3', 'oracle4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,c('oracle1', 'oracle2', 'oracle3', 'oracle4')]))
))
graph_tr_Y_0 <-
data.frame(k=rep(c(21,81,321,641), 3),
Estimator=c(rep('Ensemble', 4),
rep('GLM', 4),
rep('LASSO', 4)
),
Estimate=c(rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,c('tr1', 'tr2', 'tr3', 'tr4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,c('tr1', 'tr2', 'tr3', 'tr4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,c('tr1', 'tr2', 'tr3', 'tr4')]))
))
graph_shrinkage_Y_0 <-
data.frame(k=rep(c(21,81,321,641), 3),
Estimator=c(rep('Ensemble', 4),
rep('GLM', 4),
rep('LASSO', 4)
),
Estimate=c(rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,c('nlshrink1', 'nlshrink2', 'nlshrink3', 'nlshrink4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,c('nlshrink1', 'nlshrink2', 'nlshrink3', 'nlshrink4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,c('nlshrink1', 'nlshrink2', 'nlshrink3', 'nlshrink4')]))
))
graph_est_Y_0 <-
data.frame(k=rep(c(21,81,321,641), 3),
Estimator=c(rep('Ensemble', 4),
rep('GLM', 4),
rep('LASSO', 4)
),
Estimate=c(rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,c('est1', 'est2', 'est3', 'est4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,c('est1', 'est2', 'est3', 'est4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,c('est1', 'est2', 'est3', 'est4')]))
))
graph_oracle_Y_0 <-
data.frame(k=rep(c(21,81,321,641), 3),
Estimator=c(rep('Ensemble', 4),
rep('GLM', 4),
rep('LASSO', 4)
),
Estimate=c(rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,c('oracle1', 'oracle2', 'oracle3', 'oracle4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,c('oracle1', 'oracle2', 'oracle3', 'oracle4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,c('oracle1', 'oracle2', 'oracle3', 'oracle4')]))
))
col <- c("#CC6666", "#9999CC", "#66CC99")
g2_tr_Y_1_binary <- ggplot(data=graph_tr_Y_1, aes(x=k, y=Estimate, col=Estimator)) + geom_line(size=1, position = position_dodge(width = 10)) +
scale_x_continuous(breaks=c(21,81,321,641)) +
theme_bw() + ylab(expression(IF[22]^{tr})) +
scale_color_manual(values=col) +
scale_fill_manual(values=col) +
geom_hline(yintercept=bias_out$bias_stacked$Y_1, col=col[1], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_glm$Y_1, col=col[2], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_lasso$Y_1, col=col[3], linetype="dashed", lwd=1.2) +
ylim(c(-0.02,0.2)) +
guides(fill=guide_legend(title="Nuisance parameter estimator"),
col = guide_legend(title="Nuisance parameter estimator"))
g2_shrinkage_Y_1_binary <- ggplot(data=graph_shrinkage_Y_1, aes(x=k, y=Estimate, col=Estimator)) + geom_line(size=1, position = position_dodge(width = 10)) +
scale_x_continuous(breaks=c(21,81,321,641)) +
theme_bw() + ylab(expression(IF[22]^{shrinkage})) +
scale_color_manual(values=col) +
scale_fill_manual(values=col) +
geom_hline(yintercept=bias_out$bias_stacked$Y_1, col=col[1], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_glm$Y_1, col=col[2], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_lasso$Y_1, col=col[3], linetype="dashed", lwd=1.2) +
ylim(c(-0.02,0.2)) +
guides(fill=guide_legend(title="Nuisance parameter estimator"),
col = guide_legend(title="Nuisance parameter estimator"))
g2_est_Y_1_binary <- ggplot(data=graph_est_Y_1, aes(x=k, y=Estimate, col=Estimator)) + geom_line(size=1, position = position_dodge(width = 10)) +
scale_x_continuous(breaks=c(21,81,321,641)) +
theme_bw() + ylab(expression(IF[22]^{est})) +
scale_color_manual(values=col) +
scale_fill_manual(values=col) +
geom_hline(yintercept=bias_out$bias_stacked$Y_1, col=col[1], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_glm$Y_1, col=col[2], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_lasso$Y_1, col=col[3], linetype="dashed", lwd=1.2) +
ylim(c(-0.02,0.2)) +
guides(fill=guide_legend(title="Nuisance parameter estimator"),
col = guide_legend(title="Nuisance parameter estimator"))
g2_oracle_Y_1_binary <- ggplot(data=graph_oracle_Y_1, aes(x=k, y=Estimate, col=Estimator)) + geom_line(size=1, position = position_dodge(width = 10)) +
scale_x_continuous(breaks=c(21,81,321,641)) +
theme_bw() + ylab(expression(IF[22]^{oracle})) +
scale_color_manual(values=col) +
scale_fill_manual(values=col) +
geom_hline(yintercept=bias_out$bias_stacked$Y_1, col=col[1], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_glm$Y_1, col=col[2], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_lasso$Y_1, col=col[3], linetype="dashed", lwd=1.2) +
ylim(c(-0.02,0.2)) +
guides(fill=guide_legend(title="Nuisance parameter estimator"),
col = guide_legend(title="Nuisance parameter estimator"))
g2_tr_Y_0_binary <- ggplot(data=graph_tr_Y_0, aes(x=k, y=Estimate, col=Estimator)) + geom_line(size=1, position = position_dodge(width = 10)) +
scale_x_continuous(breaks=c(21,81,321,641)) +
theme_bw() + ylab(expression(IF[22]^{tr})) +
scale_color_manual(values=col) +
scale_fill_manual(values=col) +
geom_hline(yintercept=bias_out$bias_stacked$Y_0, col=col[1], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_glm$Y_0, col=col[2], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_lasso$Y_0, col=col[3], linetype="dashed", lwd=1.2) +
ylim(c(-0.15,0.03)) +
guides(fill=guide_legend(title="Nuisance parameter estimator"),
col = guide_legend(title="Nuisance parameter estimator"))
g2_shrinkage_Y_0_binary <- ggplot(data=graph_shrinkage_Y_0, aes(x=k, y=Estimate, col=Estimator)) + geom_line(size=1, position = position_dodge(width = 10)) +
scale_x_continuous(breaks=c(21,81,321,641)) +
theme_bw() + ylab(expression(IF[22]^{shrinkage})) +
scale_color_manual(values=col) +
scale_fill_manual(values=col) +
geom_hline(yintercept=bias_out$bias_stacked$Y_0, col=col[1], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_glm$Y_0, col=col[2], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_lasso$Y_0, col=col[3], linetype="dashed", lwd=1.2) +
ylim(c(-0.15,0.03)) +
guides(fill=guide_legend(title="Nuisance parameter estimator"),
col = guide_legend(title="Nuisance parameter estimator"))
g2_est_Y_0_binary <- ggplot(data=graph_est_Y_0, aes(x=k, y=Estimate, col=Estimator)) + geom_line(size=1, position = position_dodge(width = 10)) +
scale_x_continuous(breaks=c(21,81,321,641)) +
theme_bw() + ylab(expression(IF[22]^{est})) +
scale_color_manual(values=col) +
scale_fill_manual(values=col) +
geom_hline(yintercept=bias_out$bias_stacked$Y_0, col=col[1], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_glm$Y_0, col=col[2], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_lasso$Y_0, col=col[3], linetype="dashed", lwd=1.2) +
ylim(c(-0.15,0.03)) +
guides(fill=guide_legend(title="Nuisance parameter estimator"),
col = guide_legend(title="Nuisance parameter estimator"))
g2_oracle_Y_0_binary <- ggplot(data=graph_oracle_Y_0, aes(x=k, y=Estimate, col=Estimator)) + geom_line(size=1, position = position_dodge(width = 10)) +
scale_x_continuous(breaks=c(21,81,321,641)) +
theme_bw() + ylab(expression(IF[22]^{oracle})) +
scale_color_manual(values=col) +
scale_fill_manual(values=col) +
geom_hline(yintercept=bias_out$bias_stacked$Y_0, col=col[1], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_glm$Y_0, col=col[2], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_lasso$Y_0, col=col[3], linetype="dashed", lwd=1.2) +
ylim(c(-0.12,0.03)) +
guides(fill=guide_legend(title="Nuisance parameter estimator"),
col = guide_legend(title="Nuisance parameter estimator"))
ggarrange(g2_tr_Y_1_binary, g2_tr_Y_0_binary,
g2_shrinkage_Y_1_binary, g2_shrinkage_Y_0_binary,
g2_est_Y_1_binary, g2_est_Y_0_binary,
g2_oracle_Y_1_binary, g2_oracle_Y_0_binary,
ncol=2, nrow=4, common.legend = TRUE, legend="bottom",
font.label=list(size=20))
ggsave("./figures/cont_graph_Y_1_and_Y_0.png", dpi=600)
###################################################################
load("./output/binary_sim_5000_200_1,2,3,4,5,6,7,8.RData");load("./output/bias_binary.RData");load("./output/cs_bias_binary.RData")
###################################################################
# Table 4
n <- 5000
data.frame(
Estimator = c('Ensemble', 'Boosted trees', 'Random forest', 'KNN', 'LASSO', 'GLM'),
EY1 = c(
mean(unlist(sim_out['Y_1_stacked',])),
mean(unlist(sim_out['Y_1_boosted_tree',])),
mean(unlist(sim_out['Y_1_random_forest',])),
mean(unlist(sim_out['Y_1_knn',])),
mean(unlist(sim_out['Y_1_lasso',])),
mean(unlist(sim_out['Y_1_glm',]))
),
seY1 = c(
mean(sqrt(unlist(sim_out['var_Y_1_stacked',])/n)),
mean(sqrt(unlist(sim_out['var_Y_1_boosted_tree',])/n)),
mean(sqrt(unlist(sim_out['var_Y_1_random_forest',])/n)),
mean(sqrt(unlist(sim_out['var_Y_1_knn',])/n)),
mean(sqrt(unlist(sim_out['var_Y_1_lasso',])/n)),
mean(sqrt(unlist(sim_out['var_Y_1_glm',])/n))
),
BiasEY1 = c(
bias_out$bias_stacked$Y_1,
bias_out$bias_boosted_tree$Y_1,
bias_out$bias_random_forest$Y_1,
bias_out$bias_knn$Y_1,
bias_out$bias_lasso$Y_1,
bias_out$bias_glm$Y_1
),
CSBiasa1 = c(
cs_bias_out$cs_bias_stacked$Y_1,
cs_bias_out$cs_bias_boosted_tree$Y_1,
cs_bias_out$cs_bias_random_forest$Y_1,
cs_bias_out$cs_bias_knn$Y_1,
cs_bias_out$cs_bias_lasso$Y_1,
cs_bias_out$cs_bias_glm$Y_1
),
EY0 = c(
mean(unlist(sim_out['Y_0_stacked',])),
mean(unlist(sim_out['Y_0_boosted_tree',])),
mean(unlist(sim_out['Y_0_random_forest',])),
mean(unlist(sim_out['Y_0_knn',])),
mean(unlist(sim_out['Y_0_lasso',])),
mean(unlist(sim_out['Y_0_glm',]))
),
seY0 = c(
mean(sqrt(unlist(sim_out['var_Y_0_stacked',])/n)),
mean(sqrt(unlist(sim_out['var_Y_0_boosted_tree',])/n)),
mean(sqrt(unlist(sim_out['var_Y_0_random_forest',])/n)),
mean(sqrt(unlist(sim_out['var_Y_0_knn',])/n)),
mean(sqrt(unlist(sim_out['var_Y_0_lasso',])/n)),
mean(sqrt(unlist(sim_out['var_Y_0_glm',])/n))
),
BiasEY0 = c(
bias_out$bias_stacked$Y_0,
bias_out$bias_boosted_tree$Y_0,
bias_out$bias_random_forest$Y_0,
bias_out$bias_knn$Y_0,
bias_out$bias_lasso$Y_0,
bias_out$bias_glm$Y_0
),
CSBiasa0 = c(
cs_bias_out$cs_bias_stacked$Y_0,
cs_bias_out$cs_bias_boosted_tree$Y_0,
cs_bias_out$cs_bias_random_forest$Y_0,
cs_bias_out$cs_bias_knn$Y_0,
cs_bias_out$cs_bias_lasso$Y_0,
cs_bias_out$cs_bias_glm$Y_0
)
) %>% knitr::kable(format='latex', booktabs = T, linesep = "")
# Table 5
n_sims <- 200
data.frame(
Estimator = c('Ensemble', 'Boosted trees', 'Random forest', 'KNN', 'LASSO', 'GLM'),
CSBiasa1 = c(
cs_bias_out$cs_bias_stacked$Y_1,
cs_bias_out$cs_bias_boosted_tree$Y_1,
cs_bias_out$cs_bias_random_forest$Y_1,
cs_bias_out$cs_bias_knn$Y_1,
cs_bias_out$cs_bias_lasso$Y_1,
cs_bias_out$cs_bias_glm$Y_1
),
IF22oraclea1 = c(
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'oracle5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'oracle5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'oracle5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'oracle5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'oracle5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'oracle5']))
),
IF22oraclea1_sd = c(
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'oracle5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'oracle5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'oracle5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'oracle5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'oracle5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'oracle5'])),')')
),
IF22tra1 = c(
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'tr5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'tr5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'tr5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'tr5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'tr5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'tr5']))
),
IF22tra1_sd = c(
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'tr5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'tr5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'tr5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'tr5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'tr5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'tr5'])),')')
),
IF22nlshrinka1 = c(
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'nlshrink5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'nlshrink5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'nlshrink5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'nlshrink5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'nlshrink5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'nlshrink5']))
),
IF22nlshrinka1_sd = c(
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'nlshrink5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'nlshrink5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'nlshrink5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'nlshrink5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'nlshrink5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'nlshrink5'])),')')
),
IF22esta1 = c(
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'est5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'est5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'est5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'est5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'est5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'est5']))
),
IF22esta1_sd = c(
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,'est5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff1',][[x]][2,'est5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff1',][[x]][2,'est5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff1',][[x]][2,'est5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,'est5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,'est5'])),')')
)
) %>% knitr::kable(format='latex', booktabs = T, linesep = "")
# Table 6
n_sims <- 200
data.frame(
Estimator = c('Ensemble', 'Boosted trees', 'Random forest', 'KNN', 'LASSO', 'GLM'),
CSBiasa0 = c(
cs_bias_out$cs_bias_stacked$Y_0,
cs_bias_out$cs_bias_boosted_tree$Y_0,
cs_bias_out$cs_bias_random_forest$Y_0,
cs_bias_out$cs_bias_knn$Y_0,
cs_bias_out$cs_bias_lasso$Y_0,
cs_bias_out$cs_bias_glm$Y_0
),
IF22oraclea0 = c(
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'oracle5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'oracle5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'oracle5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'oracle5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'oracle5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'oracle5']))
),
IF22oraclea0_sd = c(
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'oracle5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'oracle5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'oracle5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'oracle5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'oracle5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'oracle5'])),')')
),
IF22tra0 = c(
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'tr5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'tr5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'tr5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'tr5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'tr5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'tr5']))
),
IF22tra0_sd = c(
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'tr5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'tr5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'tr5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'tr5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'tr5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'tr5'])),')')
),
IF22nlshrinka0 = c(
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'nlshrink5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'nlshrink5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'nlshrink5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'nlshrink5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'nlshrink5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'nlshrink5']))
),
IF22nlshrinka0_sd = c(
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'nlshrink5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'nlshrink5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'nlshrink5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'nlshrink5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'nlshrink5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'nlshrink5'])),')')
),
IF22esta0 = c(
mean(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'est5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'est5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'est5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'est5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'est5'])),
mean(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'est5']))
),
IF22esta0_sd = c(
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,'est5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_boosted_tree_eff0',][[x]][2,'est5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_random_forest_eff0',][[x]][2,'est5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_knn_eff0',][[x]][2,'est5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,'est5'])),')'),
paste0('(',sd(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,'est5'])),')')
)
) %>% knitr::kable(format='latex', booktabs = T, linesep = "")
# Figure 3
n_sims <- 200
graph_tr_Y_1 <-
data.frame(k=rep(c(11,56,176,386), 3),
Estimator=c(rep('Ensemble', 4),
rep('GLM', 4),
rep('LASSO', 4)
),
Estimate=c(rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,c('tr1', 'tr2', 'tr3', 'tr4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,c('tr1', 'tr2', 'tr3', 'tr4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,c('tr1', 'tr2', 'tr3', 'tr4')]))
))
graph_shrinkage_Y_1 <-
data.frame(k=rep(c(11,56,176,386,638), 3),
Estimator=c(rep('Ensemble', 5),
rep('GLM', 5),
rep('LASSO', 5)
),
Estimate=c(rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,c('nlshrink1', 'nlshrink2', 'nlshrink3', 'nlshrink4', 'nlshrink5')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,c('nlshrink1', 'nlshrink2', 'nlshrink3', 'nlshrink4', 'nlshrink5')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,c('nlshrink1', 'nlshrink2', 'nlshrink3', 'nlshrink4', 'nlshrink5')]))
))
graph_est_Y_1 <-
data.frame(k=rep(c(11,56,176,386,638), 3),
Estimator=c(rep('Ensemble', 5),
rep('GLM', 5),
rep('LASSO', 5)
),
Estimate=c(rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,c('est1', 'est2', 'est3', 'est4', 'est5')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,c('est1', 'est2', 'est3', 'est4', 'est5')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,c('est1', 'est2', 'est3', 'est4', 'est5')]))
))
graph_oracle_Y_1 <-
data.frame(k=rep(c(11,56,176,386,638), 3),
Estimator=c(rep('Ensemble', 5),
rep('GLM', 5),
rep('LASSO', 5)
),
Estimate=c(rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff1',][[x]][2,c('oracle1', 'oracle2', 'oracle3', 'oracle4', 'oracle5')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff1',][[x]][2,c('oracle1', 'oracle2', 'oracle3', 'oracle4', 'oracle5')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff1',][[x]][2,c('oracle1', 'oracle2', 'oracle3', 'oracle4', 'oracle5')]))
))
graph_tr_Y_0 <-
data.frame(k=rep(c(11,56,176,386), 3),
Estimator=c(rep('Ensemble', 4),
rep('GLM', 4),
rep('LASSO', 4)
),
Estimate=c(rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,c('tr1', 'tr2', 'tr3', 'tr4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,c('tr1', 'tr2', 'tr3', 'tr4')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,c('tr1', 'tr2', 'tr3', 'tr4')]))
))
graph_shrinkage_Y_0 <-
data.frame(k=rep(c(11,56,176,386,638), 3),
Estimator=c(rep('Ensemble', 5),
rep('GLM', 5),
rep('LASSO', 5)
),
Estimate=c(rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,c('nlshrink1', 'nlshrink2', 'nlshrink3', 'nlshrink4', 'nlshrink5')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,c('nlshrink1', 'nlshrink2', 'nlshrink3', 'nlshrink4', 'nlshrink5')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,c('nlshrink1', 'nlshrink2', 'nlshrink3', 'nlshrink4', 'nlshrink5')]))
))
graph_est_Y_0 <-
data.frame(k=rep(c(11,56,176,386,638), 3),
Estimator=c(rep('Ensemble', 5),
rep('GLM', 5),
rep('LASSO', 5)
),
Estimate=c(rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,c('est1', 'est2', 'est3', 'est4', 'est5')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,c('est1', 'est2', 'est3', 'est4', 'est5')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,c('est1', 'est2', 'est3', 'est4', 'est5')]))
))
graph_oracle_Y_0 <-
data.frame(k=rep(c(11,56,176,386,638), 3),
Estimator=c(rep('Ensemble', 5),
rep('GLM', 5),
rep('LASSO', 5)
),
Estimate=c(rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_stacked_eff0',][[x]][2,c('oracle1', 'oracle2', 'oracle3', 'oracle4', 'oracle5')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_glm_eff0',][[x]][2,c('oracle1', 'oracle2', 'oracle3', 'oracle4', 'oracle5')])),
rowMeans(sapply(1:n_sims, function(x) sim_out['HOIF_lasso_eff0',][[x]][2,c('oracle1', 'oracle2', 'oracle3', 'oracle4', 'oracle5')]))
))
col <- c("#CC6666", "#9999CC", "#66CC99")
g2_tr_Y_1_binary <- ggplot(data=graph_tr_Y_1, aes(x=k, y=Estimate, col=Estimator)) + geom_line(size=1, position = position_dodge(width = 10)) +
scale_x_continuous(breaks=c(11,56,176,386)) +
theme_bw() + ylab(expression(IF[22]^{tr})) +
scale_color_manual(values=col) +
scale_fill_manual(values=col) +
geom_hline(yintercept=bias_out$bias_stacked$Y_1, col=col[1], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_glm$Y_1, col=col[2], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_lasso$Y_1, col=col[3], linetype="dashed", lwd=1.2) +
ylim(c(-0.05,0.03)) +
guides(fill=guide_legend(title="Nuisance parameter estimator"),
col = guide_legend(title="Nuisance parameter estimator"))
g2_shrinkage_Y_1_binary <- ggplot(data=graph_shrinkage_Y_1, aes(x=k, y=Estimate, col=Estimator)) + geom_line(size=1, position = position_dodge(width = 10)) +
scale_x_continuous(breaks=c(11,56,176,386,638)) +
theme_bw() + ylab(expression(IF[22]^{shrinkage})) +
scale_color_manual(values=col) +
scale_fill_manual(values=col) +
geom_hline(yintercept=bias_out$bias_stacked$Y_1, col=col[1], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_glm$Y_1, col=col[2], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_lasso$Y_1, col=col[3], linetype="dashed", lwd=1.2) +
ylim(c(-0.05,0.03)) +
guides(fill=guide_legend(title="Nuisance parameter estimator"),
col = guide_legend(title="Nuisance parameter estimator"))
g2_est_Y_1_binary <- ggplot(data=graph_est_Y_1, aes(x=k, y=Estimate, col=Estimator)) + geom_line(size=1, position = position_dodge(width = 10)) +
scale_x_continuous(breaks=c(11,56,176,386,638)) +
theme_bw() + ylab(expression(IF[22]^{est})) +
scale_color_manual(values=col) +
scale_fill_manual(values=col) +
geom_hline(yintercept=bias_out$bias_stacked$Y_1, col=col[1], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_glm$Y_1, col=col[2], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_lasso$Y_1, col=col[3], linetype="dashed", lwd=1.2) +
ylim(c(-0.05,0.03)) +
guides(fill=guide_legend(title="Nuisance parameter estimator"),
col = guide_legend(title="Nuisance parameter estimator"))
g2_oracle_Y_1_binary <- ggplot(data=graph_oracle_Y_1, aes(x=k, y=Estimate, col=Estimator)) + geom_line(size=1, position = position_dodge(width = 10)) +
scale_x_continuous(breaks=c(11,56,176,386,638)) +
theme_bw() + ylab(expression(IF[22]^{oracle})) +
scale_color_manual(values=col) +
scale_fill_manual(values=col) +
geom_hline(yintercept=bias_out$bias_stacked$Y_1, col=col[1], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_glm$Y_1, col=col[2], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_lasso$Y_1, col=col[3], linetype="dashed", lwd=1.2) +
ylim(c(-0.05,0.03)) +
guides(fill=guide_legend(title="Nuisance parameter estimator"),
col = guide_legend(title="Nuisance parameter estimator"))
g2_tr_Y_0_binary <- ggplot(data=graph_tr_Y_0, aes(x=k, y=Estimate, col=Estimator)) + geom_line(size=1, position = position_dodge(width = 10)) +
scale_x_continuous(breaks=c(11,56,176,386)) +
theme_bw() + ylab(expression(IF[22]^{tr})) +
scale_color_manual(values=col) +
scale_fill_manual(values=col) +
geom_hline(yintercept=bias_out$bias_stacked$Y_0, col=col[1], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_glm$Y_0, col=col[2], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_lasso$Y_0, col=col[3], linetype="dashed", lwd=1.2) +
ylim(c(-0.04,0.015)) +
guides(fill=guide_legend(title="Nuisance parameter estimator"),
col = guide_legend(title="Nuisance parameter estimator"))
g2_shrinkage_Y_0_binary <- ggplot(data=graph_shrinkage_Y_0, aes(x=k, y=Estimate, col=Estimator)) + geom_line(size=1, position = position_dodge(width = 10)) +
scale_x_continuous(breaks=c(11,56,176,386,638)) +
theme_bw() + ylab(expression(IF[22]^{shrinkage})) +
scale_color_manual(values=col) +
scale_fill_manual(values=col) +
geom_hline(yintercept=bias_out$bias_stacked$Y_0, col=col[1], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_glm$Y_0, col=col[2], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_lasso$Y_0, col=col[3], linetype="dashed", lwd=1.2) +
ylim(c(-0.04,0.015)) +
guides(fill=guide_legend(title="Nuisance parameter estimator"),
col = guide_legend(title="Nuisance parameter estimator"))
g2_est_Y_0_binary <- ggplot(data=graph_est_Y_0, aes(x=k, y=Estimate, col=Estimator)) + geom_line(size=1, position = position_dodge(width = 10)) +
scale_x_continuous(breaks=c(11,56,176,386,638)) +
theme_bw() + ylab(expression(IF[22]^{est})) +
scale_color_manual(values=col) +
scale_fill_manual(values=col) +
geom_hline(yintercept=bias_out$bias_stacked$Y_0, col=col[1], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_glm$Y_0, col=col[2], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_lasso$Y_0, col=col[3], linetype="dashed", lwd=1.2) +
ylim(c(-0.04,0.015)) +
guides(fill=guide_legend(title="Nuisance parameter estimator"),
col = guide_legend(title="Nuisance parameter estimator"))
g2_oracle_Y_0_binary <- ggplot(data=graph_oracle_Y_0, aes(x=k, y=Estimate, col=Estimator)) + geom_line(size=1, position = position_dodge(width = 10)) +
scale_x_continuous(breaks=c(11,56,176,386,638)) +
theme_bw() + ylab(expression(IF[22]^{oracle})) +
scale_color_manual(values=col) +
scale_fill_manual(values=col) +
geom_hline(yintercept=bias_out$bias_stacked$Y_0, col=col[1], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_glm$Y_0, col=col[2], linetype="dashed", lwd=1.2) +
geom_hline(yintercept=bias_out$bias_lasso$Y_0, col=col[3], linetype="dashed", lwd=1.2) +
ylim(c(-0.04,0.015)) +
guides(fill=guide_legend(title="Nuisance parameter estimator"),
col = guide_legend(title="Nuisance parameter estimator"))
ggarrange(g2_tr_Y_1_binary, g2_tr_Y_0_binary,
g2_shrinkage_Y_1_binary, g2_shrinkage_Y_0_binary,
g2_est_Y_1_binary, g2_est_Y_0_binary,
g2_oracle_Y_1_binary, g2_oracle_Y_0_binary,
ncol=2, nrow=4, common.legend = TRUE, legend="bottom",
font.label=list(size=20))
ggsave("./figures/binary_graph_Y_1_and_Y_0.png", dpi=600)