-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathContraction.py
287 lines (188 loc) · 6.51 KB
/
Contraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from CPD.NLS import fast_hessian_contract, CP_fastNLS_Optimizer
from CPD.common_kernels import compute_number_of_variables, flatten_Tensor, reshape_into_matrices, solve_sys, get_residual
from CPD.standard_ALS import CP_DTALS_Optimizer
import argparse
import time
import numpy as np
import sys
import os
import csv
import tensors.synthetic_tensors as synthetic_tensors
from pathlib import Path
from os.path import dirname, join
parent_dir = dirname(__file__)
results_dir = join(parent_dir, 'results')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--tlib',
default="ctf",
metavar='string',
choices=[
'ctf',
'numpy',
],
help='choose tensor library to test, choose between numpy and ctf (default: ctf)')
parser.add_argument(
'--s',
type=int,
default=300,
metavar="int",
help="size of the tensor (s=R=size) for testing contractions, default is 300")
parser.add_argument(
'--R',
type=int,
default=300,
metavar="int",
help="Rank of the tensor (s=R=size) for testing contractions, default is 300")
parser.add_argument(
'--iterations',
type=int,
default=10,
metavar="int",
help="number of iterations")
parser.add_argument(
'--nodes',
type=int,
default=4,
metavar="int",
help="Number of nodes, default is 4")
parser.add_argument(
'--order',
type=int,
default=3,
metavar="int",
help="order of the tensor, default is 3")
parser.add_argument(
'--precond',
type=int,
default=1,
metavar="int",
help="If preconditioned iteration, choose 0 or 1, default is 1")
args, _ = parser.parse_known_args()
tlib = args.tlib
s= args.s
R = args.R
nodes=args.nodes
iterations = args.iterations
order = args.order
precond = args.precond
csv_path = join(results_dir, 'new_svd_precond_test_batch_inc'+'.csv')
is_new_log = not Path(csv_path).exists()
csv_file = open(csv_path, 'a')#, newline='')
csv_writer = csv.writer(
csv_file, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
if tlib == "numpy":
import backend.numpy_ext as tenpy
elif tlib == "ctf":
import backend.ctf_ext as tenpy
import ctf
# initialize the csv file
if tenpy.is_master_proc():
if is_new_log:
csv_writer.writerow([
'precond','nodes','s','R','iterations','cg_median', 'mean_cg', 'std_cg', 'nls_median', 'mean_nls', 'std_nls','mean_start_up','std_start_up','mean_cg_batch','median_als', 'mean_als','std_als'
])
# tenpy.printf('testing on',nodes,'nodes')
X = []
delta = []
time_cg = []
time_nls = []
start_up = []
time_cg_b = []
time_nls_b = []
start_up_b = []
#tenpy.printf('performing warm up iteration')
for i in range(order):
X.append(tenpy.random((s,R)))
delta.append(tenpy.random((s,R)))
T = tenpy.random(order*[s])
maxiter = 1
cg_tol = 1e-08
num = 0
diag = 0
Arm = 0
c = 0
tau = 0
arm_iters = 0
opt = CP_fastNLS_Optimizer(tenpy,T,X,maxiter,cg_tol,num,diag,Arm,c,tau,arm_iters,args)
t1 = time.time()
start = time.time()
opt.compute_G()
opt.compute_gamma()
g= opt.gradient()
if precond:
P = opt.compute_block_diag_preconditioner(1)
end = time.time()
if precond:
vals = opt.fast_precond_conjugate_gradient(g,P,1)
else:
vals = opt.fast_conjugate_gradient(g,1)
#vals = opt.fast_conjugate_gradient_batch(g,1)
t2= time.time()
#tenpy.printf('warm up iteration completed')
start1 = time.time()
opt.compute_G()
opt.compute_gamma()
g= opt.gradient()
#
if precond:
P = opt.compute_block_diag_preconditioner(1)
end1 = time.time()
for i in range(iterations):
t1 = time.time()
start = time.time()
if precond:
vals = opt.fast_precond_conjugate_gradient(g,P,1)
else:
#vals = opt.fast_conjugate_gradient_batch(g,1)
vals = opt.fast_conjugate_gradient(g,1)
end=time.time()
time_cg+=[end-start]
t2= time.time()
time_nls+=[t2-t1]
# print('nls completed, moving to batch nls')
gg = opt.gradient_GG(g)
for i in range(iterations):
start = time.time()
#vals = opt.fast_conjugate_gradient_batch(g,1)
vals = opt.fast_conjugate_gradient_batch(gg,1)
end=time.time()
time_cg_b+=[end-start]
t2= time.time()
time_nls_b+=[t2-t1]
#print('batch nls completed, moving to als')
opt2 = CP_DTALS_Optimizer(tenpy,T,X)
opt2.step(1e-08)
#print('warm up of als completed')
time_als = []
for i in range(iterations):
t1 = time.time()
#vals=opt2.step(1e-08)
t2 = time.time()
time_als+=[t2-t1]
#print('\n time taken for cg batch steps is:',time_cg_b)
#print('\n time taken for nls_batch is:',time_nls_b)
#print('\n time taken for als is:',time_als)
mean_cg = np.mean(time_cg)
mean_nls = np.mean(time_nls)
mean_cg_b = np.mean(time_cg_b)
mean_nls_b = np.mean(time_nls_b)
mean_als= np.mean(time_als)
mean_start_up= 0
#print('\n mean time taken for cg:',mean_cg)
#print('\n mean time taken for nls:',mean_nls)
# print('\n mean time taken for als:',mean_als)
std_cg = np.std(time_cg)
std_nls = np.std(time_nls)
std_als = np.std(time_als)
std_start_up = 0
std_cg_b = np.std(time_cg_b)
std_nls_b = np.std(time_nls_b)
median_cg = np.median(time_cg)
median_nls = np.median(time_nls)
median_als = np.median(time_als)
if tenpy.is_master_proc():
if csv_file is not None:
csv_writer.writerow([precond,nodes,s,R,iterations, median_cg,mean_cg, std_cg, median_nls, mean_nls, std_nls, mean_start_up, std_start_up,mean_cg_b, median_als, mean_als,std_als ])
csv_file.flush()