forked from NVIDIA/earth2mip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04_diagnostic_models.py
260 lines (218 loc) · 7.93 KB
/
04_diagnostic_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# %%
"""
Diagnostic Models for Precipitation
===================================
The following notebook will demonstrate how to use diagnostic models inside of Earth-2
MIP for transforming outputs of global weather models into different quantities of
interest. More information on diagnostics can be found in the `user guide <https://nvidia.github.io/earth2mip/userguide/diagnostic.html>`_.
In summary this notebook will cover the following topics:
- Loading a built in diagnostic model for predicting total precipitation
- Combining the diagnostic model with a prognostic model using the DiangosticLooper
"""
# %%
import datetime
import os
import dotenv
dotenv.load_dotenv()
# %%
# Loading Diagnostic Models
# -------------------------
# Loading diagnostic models is similar to prognostic models, but presently use a
# slightly different API. In this example we will using the built in AFNO FourCast Net
# to serve as the underlying prognostic model that will drive the time-ingration. The
# :code:`PrecipitationAFNO` model will then be used to "post-process" the outputs of
# this model to predict precipitation. The key API to load a diagnostic model is the
# :code:`load_diagnostic(package)` function which takes a model package in. If you're
# interested in using the built in model package (i.e. checkpoint), then the
# :code:`load_package()` function can do this for you.
# %%
from modulus.distributed.manager import DistributedManager
from earth2mip.networks import get_model
from earth2mip.diagnostic import PrecipitationAFNO
device = DistributedManager().device
print("Loading FCN model")
model = get_model("e2mip://fcn", device=device)
print("Loading precipitation model")
package = PrecipitationAFNO.load_package()
diagnostic = PrecipitationAFNO.load_diagnostic(package)
# %%
# The next step is to wrap the prognostic model with the Diagnostic Time loop.
# Essentially this adds the execution of the diagnostic model on top of the forecast
# model iterator. This will add the total preciptation field (`tp`) to the output data
# which can the be further processed.
# %%
from earth2mip.diagnostic import DiagnosticTimeLoop
model_diagnostic = DiagnosticTimeLoop(diagnostics=[diagnostic], model=model)
# %%
# Running Inference
# -----------------
# With the diagnostic time loop created the final steps are to create the data source
# and run inference. For this example we will use the CDS data source again. Its assumed
# your CDS API key is already set up. Reference the `first example <https://nvidia.github.io/earth2mip/examples/01_ensemble_inference.html#set-up>`_
# for additional information. We will use the basic inference workflow which returns a
# Xarray dataset we will save to netCDF.
# %%
from earth2mip.inference_ensemble import run_basic_inference
from earth2mip.initial_conditions import cds
print("Constructing initializer data source")
data_source = cds.DataSource(model.in_channel_names)
time = datetime.datetime(2018, 4, 4)
print("Running inference")
output_dir = "outputs/04_diagnostic_precip"
os.makedirs(output_dir, exist_ok=True)
ds = run_basic_inference(
model_diagnostic,
n=20,
data_source=data_source,
time=time,
)
ds.to_netcdf(os.path.join(output_dir, "precipitation_afno.nc"))
print(ds)
# %%
# Post Processing
# ---------------
# With inference complete we can do some post processing on our predictions. Lets first
# visualize the total precipitation and total column water vapor for a few days.
# %%
import cartopy
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import xarray as xr
plt.close("all")
# Open dataset from saved NetCDFs
ds = xr.open_dataarray(os.path.join(output_dir, "precipitation_afno.nc"))
ndays = 3
proj = ccrs.Robinson()
fig, ax = plt.subplots(
2,
ndays,
figsize=(15, 5),
subplot_kw={"projection": proj},
gridspec_kw={"wspace": 0.05, "hspace": 0.007},
)
for day in range(ndays):
i = 4 * day # 6-hour timesteps
tp = ds[i, 0].sel(channel="tp")
img = ax[0, day].pcolormesh(
tp.lon,
tp.lat,
tp.values,
transform=ccrs.PlateCarree(),
cmap="cividis",
vmin=0,
vmax=0.05,
)
ax[0, day].set_title(pd.to_datetime(ds.coords["time"])[i])
ax[0, day].coastlines(color="k")
plt.colorbar(img, ax=ax[0, day], shrink=0.40)
tcwv = ds[i, 0].sel(channel="tcwv")
img = ax[1, day].pcolormesh(
tcwv.lon,
tcwv.lat,
tcwv.values,
transform=ccrs.PlateCarree(),
cmap="gist_ncar",
vmin=0,
vmax=75,
)
ax[1, day].coastlines(resolution="auto", color="k")
plt.colorbar(img, ax=ax[1, day], shrink=0.40)
ax[0, 0].text(
-0.07,
0.55,
"Total Precipitation (m)",
va="bottom",
ha="center",
rotation="vertical",
rotation_mode="anchor",
transform=ax[0, 0].transAxes,
)
ax[1, 0].text(
-0.07,
0.55,
"Total Column\nWater Vapor (kg m-2)",
va="bottom",
ha="center",
rotation="vertical",
rotation_mode="anchor",
transform=ax[1, 0].transAxes,
)
plt.savefig(f"{output_dir}/diagnostic_tp_tcwv.png")
# %%
# This partiulcar date was selected for inference due to an atmopsheric river occuring
# over the west coast of the United States. Lets plot the total precipitation that
# occured over San Francisco.
# %%
plt.close("all")
# Open dataset from saved NetCDFs
ds = xr.open_dataarray(os.path.join(output_dir, "precipitation_afno.nc"))
tp_sf = ds.sel(channel="tp", lat=37.75, lon=57.5) # Lon is [0, 360]
plt.plot(pd.to_datetime(tp_sf.coords["time"]), tp_sf.values)
plt.title("SF (lat: 37.75N lon: 122.5W)")
plt.ylabel("Total Precipitation (m)")
plt.savefig(f"{output_dir}/sf_tp.png")
# %%
# The land fall of the atmosphric river is very clear here, lets have a look at the
# regional contour of the bay area to better understand the structure of this event.
# %%
plt.close("all")
# Open dataset from saved NetCDFs
ds = xr.open_dataarray(os.path.join(output_dir, "precipitation_afno.nc"))
nsteps = 5
proj = ccrs.AlbersEqualArea(central_latitude=37.75, central_longitude=-122.5)
fig, ax = plt.subplots(
1,
nsteps,
figsize=(20, 5),
subplot_kw={"projection": proj},
gridspec_kw={"wspace": 0.05, "hspace": 0.007},
)
for step in range(nsteps):
i = step + 3
tp = ds[i, 0].sel(channel="tp")
ax[step].add_feature(cartopy.feature.OCEAN, zorder=0)
ax[step].add_feature(cartopy.feature.LAND, zorder=0)
masked_data = np.ma.masked_where(tp.values < 0.001, tp.values)
img = ax[step].imshow(
1000 * masked_data,
transform=ccrs.PlateCarree(),
cmap="jet",
vmin=0,
vmax=10,
)
ax[step].set_title(pd.to_datetime(ds.coords["time"])[i])
ax[step].coastlines(color="k")
ax[step].set_extent([-115, -135, 30, 45], ccrs.PlateCarree())
plt.colorbar(img, ax=ax[step], shrink=0.40)
ax[0].text(
-0.07,
0.55,
"Total Precipitation (mm)",
va="bottom",
ha="center",
rotation="vertical",
rotation_mode="anchor",
transform=ax[0].transAxes,
)
plt.savefig(f"{output_dir}/diagnostic_bay_area_tp.png")
# %%
# This completes the introductory notebook on running diagnostic models. Diangostic
# models are signifcantly more cheap to train and more flexible for difference usecases.
# In later examples, we will explore using these models of various other tasks.