- 上手快,掌握 Numpy 和基本深度学习概念即可上手。
- 代码简洁灵活,使用 nn.Module 封装使得网络搭建更加方便 。基于动态图机制,更加灵活。
- 资源多,arXiv 中新论文的算法大多有 PyTorch 实现。
- 开发者多,Github 上贡献者(Contributors)已经超过 1100+
五大要素:
- 数据:包括数据读取,数据清洗,进行数据划分和数据预处理,比如读取图片如何预处理及数据增强。
- 模型:包括构建模型模块,组织复杂网络,初始化网络参数,定义网络层。
- 损失函数:包括创建损失函数,设置损失函数超参数,根据不同任务选择合适的损失函数。
- 优化器:包括根据梯度使用某种优化器更新参数,管理模型参数,管理多个参数组实现不同学习率,调整学习率。
- 迭代训练:组织上面 4 个模块进行反复训练。包括观察训练效果,绘制 Loss/ Accuracy 曲线,用 TensorBoard 进行可视化分析。
可以使用此命令查看是否有GPU,我木有。。
Tensor:
Tensor 中文为张量。张量的意思是一个多维数组,它是标量、向量、矩阵的高维扩展。
标量可以称为 0 维张量,向量可以称为 1 维张量,矩阵可以称为 2 维张量,RGB 图像可以表示 3 维张量。你可以把张量看作多维数组。
将0.4.0以前的版本做了修改之后,目前的Tensor具有8个属性:
- data: 被包装的 Tensor。
- grad: data 的梯度。
- grad_fn: 创建 Tensor 所使用的 Function,是自动求导的关键,因为根据所记录的函数才能计算出导数。
- requires_grad: 指示是否需要梯度,并不是所有的张量都需要计算梯度。
- is_leaf: 指示是否叶子节点(张量),叶子节点的概念在计算图中会用到,后面详细介绍。
- dtype: 张量的数据类型,如 torch.FloatTensor,torch.cuda.FloatTensor。
- shape: 张量的形状。如 (64, 3, 224, 224)
- device: 张量所在设备 (CPU/GPU),GPU 是加速计算的关键
关于 dtype,PyTorch 提供了 9 种数据类型,共分为 3 大类:float (16-bit, 32-bit, 64-bit)、integer (unsigned-8-bit ,8-bit, 16-bit, 32-bit, 64-bit)、Boolean。模型参数和数据用的最多的类型是 float-32-bit。label 常用的类型是 integer-64-bit。
Tensor的创建方式:
- 直接创建Tensor:torch.tensor(); torch.from_numpy(ndarray);
- 根据数值创建Tensor:torch.zeros(); torch.zeros_like; torch.full(); torch.full_like(); torch.arange(); torch.linspace(); torch.logspace(); torch.eye();
- 根据概率创建Tensor:troch.normal(); torch.randn(); torch.randn_like(); torch.rand(); torch.rand_like(); torch.randint(); troch.randint_like(); torch.randperm(); torch.bernoulli();
troch.tensor
torch.tensor(data, dtype=None, device=None, requires_grad=False, pin_memory=False)
data: 数据,可以是 list,numpy
dtype: 数据类型,默认与 data 的一致
device: 所在设备,cuda/cpu
requires_grad: 是否需要梯度
pin_memory: 是否存于锁页内存
import torch
import numpy as np
arr = np.ones((3, 3))
print("ndarray的数据类型:", arr.dtype)
t = torch.tensor(arr)
print(t)
//
输出为:
ndarray的数据类型: float64
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], dtype=torch.float64)
troch.from_numpy(ndarray)
从 numpy 创建 tensor。利用这个方法创建的 tensor 和原来的 ndarray 共享内存,当修改其中一个数据,另外一个也会被改动。
arr = np.array([[1, 2, 3], [4, 5, 6]])
t = torch.from_numpy(arr)
# 修改 array,tensor 也会被修改
# print("\n修改arr")
# arr[0, 0] = 0
# print("numpy array: ", arr)
# print("tensor : ", t)
# 修改 tensor,array 也会被修改
print("\n修改tensor")
t[0, 0] = -1
print("numpy array: ", arr)
print("tensor : ", t)
//
输出为:
修改tensor
numpy array: [[-1 2 3]
[ 4 5 6]]
tensor : tensor([[-1, 2, 3],
[ 4, 5, 6]], dtype=torch.int32)
torch.zeros()
torch.zeros(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
size: 张量的形状
out: 输出的张量,如果指定了 out,那么
torch.zeros()
返回的张量和 out 指向的是同一个地址layout: 内存中布局形式,有 strided,sparse_coo 等。当是稀疏矩阵时,设置为 sparse_coo 可以减少内存占用。
device: 所在设备,cuda/cpu
requires_grad: 是否需要梯度
out_t = torch.tensor([1])
# 这里制定了 out
t = torch.zeros((3, 3), out=out_t)
print(t, '\n', out_t)
# id 是取内存地址。最终 t 和 out_t 是同一个内存地址
print(id(t), id(out_t), id(t) == id(out_t))
//
输出为:
tensor([[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
tensor([[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
2984903203072 2984903203072 True
torch.zeros_like
torch.zeros_like(input, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format)
功能:根据 input 形状创建全 0 张量
input: 创建与 input 同形状的全 0 张量
dtype: 数据类型
layout: 内存中布局形式,有 strided,sparse_coo 等。当是稀疏矩阵时,设置为 sparse_coo 可以减少内存占用。
同理还有全 1 张量的创建方法:
torch.ones()
,torch.ones_like()
。
torch.full() torch.full_like()
torch.full(size, fill_value, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
功能:创建自定义数值的张量
size: 张量的形状,如 (3,3)
fill_value: 张量中每一个元素的值
t = torch.full((3, 3), 1)
print(t)
//输出为:
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])
torch.arange()
torch.arange(start=0, end, step=1, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
功能:创建等差的 1 维张量。注意区间为[start, end)。
start: 数列起始值
end: 数列结束值,开区间,取不到结束值
step: 数列公差,默认为 1
t = torch.arange(2, 10, 2)
print(t)
//
输出为:
tensor([2, 4, 6, 8])
torch.linspace()
torch.linspace(start, end, steps=100, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
功能:创建均分的 1 维张量。数值区间为 [start, end]
start: 数列起始值
end: 数列结束值
steps: 数列长度 (元素个数)
t = torch.linspace(2, 10, 6)
print(t)
//
输出为:
tensor([ 2.0000, 3.6000, 5.2000, 6.8000, 8.4000, 10.0000])
torch.logspace()
torch.logspace(start, end, steps=100, base=10.0, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
功能:创建对数均分的 1 维张量。数值区间为 [start, end],底为 base。
start: 数列起始值
end: 数列结束值
steps: 数列长度 (元素个数)
base: 对数函数的底,默认为 10
t = torch.linspace(2, 10, 6)
print(t)
//
输出为:
tensor([ 2.0000, 3.6000, 5.2000, 6.8000, 8.4000, 10.0000])
torch.eye()
torch.eye(n, m=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
功能:创建单位对角矩阵( 2 维张量),默认为方阵
n: 矩阵行数。通常只设置 n,为方阵。
m: 矩阵列数
troch.normal()
torch.normal(mean, std, *, generator=None, out=None)
功能:生成正态分布 (高斯分布)
mean: 均值
std: 标准差
有 4 种模式:
-
mean 为标量,std 为标量。这时需要设置 size。
代码示例:
# mean:标量 std: 标量 # 这里需要设置 size t_normal = torch.normal(0., 1., size=(4,)) print(t_normal)
输出为:
tensor([0.6614, 0.2669, 0.0617, 0.6213])
-
mean 为标量,std 为张量
-
mean 为张量,std 为标量
代码示例:
# mean:张量 std: 标量 mean = torch.arange(1, 5, dtype=torch.float) std = 1 t_normal = torch.normal(mean, std) print("mean:{}\nstd:{}".format(mean, std)) print(t_normal)
输出为:
mean:tensor([1., 2., 3., 4.]) std:1 tensor([1.6614, 2.2669, 3.0617, 4.6213])
这 4 个数采样分布的均值不同,但是方差都是 1。
-
mean 为张量,std 为张量
代码示例:
# mean:张量 std: 张量 mean = torch.arange(1, 5, dtype=torch.float) std = torch.arange(1, 5, dtype=torch.float) t_normal = torch.normal(mean, std) print("mean:{}\nstd:{}".format(mean, std)) print(t_normal)
输出为:
mean:tensor([1., 2., 3., 4.]) std:tensor([1., 2., 3., 4.]) tensor([1.6614, 2.5338, 3.1850, 6.4853])
其中 1.6614 是从正态分布
$N(1,1)$ 中采样得到的,其他数字以此类推。
torch.randn() torch.randn_like()
torch.randn(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
功能:生成标准正态分布。
size: 张量的形状
torch.rand() torch.rand_like()
torch.rand(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
功能:在区间 [0, 1) 上生成均匀分布。
torch.randint() troch.randint_like()
randint(low=0, high, size, *, generator=None, out=None,
dtype=None, layout=torch.strided, device=None, requires_grad=False)
功能:在区间 [low, high) 上生成整数均匀分布。
size: 张量的形状
torch.randperm()
torch.randperm(n, out=None, dtype=torch.int64, layout=torch.strided, device=None, requires_grad=False)
功能:生成从 0 到 n-1 的随机排列。常用于生成索引。
n: 张量的长度
torch.bernoulli()
torch.bernoulli(input, *, generator=None, out=None)
功能:以 input 为概率,生成伯努利分布 (0-1 分布,两点分布)
input: 概率值
张量的操作:
- 拼接:torch.cat(); torch.stack();
- 切分:torch.chunk(); torch.split();
- 索引:torch.index_select(); torch.masked_select();
- 变换:torch.reshape(); torch.transpose(); torch.t(); torch.squeeze(); torch.unsqueeze();
张量的数学运算:
主要分为 3 类:加减乘除,对数,指数,幂函数 和三角函数。
如:torch.add(); torch.addcdiv(); torch.addcmul();