-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path.Rhistory
512 lines (512 loc) · 17 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
tt <- c(
20100101120101,
"2009-01-02 12-01-02",
"2009.01.03 12:01:03",
"2009-1-4 12-1-4",
"2009-1, 5 12:1, 5",
"200901-08 1201-08",
"2009 arbitrary 1 non-decimal 6 chars 12 in between 1 !!! 6",
"OR collapsed formats: 20090107 120107 (as long as prefixed with zeros)",
"Automatic wday, Thu, detection, 10-01-10 10:01:10 and p format: AM",
"Created on 10-01-11 at 10:01:11 PM")
ymd_hms(tt)
# pull specific time components
now() %>% day
now() %>% hour
now() %>% second
# change the day of an assigned time vector
dd <- now()
day(dd) <- 31
dd
# setting a day greater than the last day of the chosen month will automatically roll over to the following month
dd <- now()
day(dd) <- 32
dd
require(nycflights13)
flights %>% str # stored dataset from nycflights13 package
flights$time_hour %>% str # time component
ft <- flights$time_hour
# get a smaller sample
set.seed(13)
ft <- ft[sample(ft %>% length,20,replace = T)]
require(nycflights13)
ft <- ft[sample(ft %>% length,20,replace = T)]
ymd_hms(ft) # return full date and time
ydm_hms(ft) # returns some NAs b/c month > 12
hm("00:01") %>% as.numeric # returns 60 seconds after 00:00:00
hm("23:59") %>% as.numeric # returns seconds elapsed since 00:00:00 as integer
OlsonNames() %>% sample(20)
# OlsonNames() for complete list
# roll back to first or last day of previous month
now() %>% rollback(preserve_hms = T,roll_to_first = T)
2012.75 %>% date_decimal() # decimal dates, e.g. 3/4 into 2012
today() # today's date
ft
ft %>% as.character()
ft %>% as.character() %>% class
ft %>% as.character()
ftc <- ft %>% as.character()
ftc %>% as.factor %>% lubridate::hms() %>% period_to_seconds() %>% hms::as_hms()
ftc
ftc %>% as.factor
ftc %>% as.factor %>% lubridate::hms()
ftc %>% as.factor %>% period_to_seconds()
ftc %>% as.factor %>% lubridate::ymd_hms()
ftc %>% as.factor %>% lubridate::ymd_hms() %>% period_to_seconds() %>% hms::as_hms()
ftc %>% as.factor %>% lubridate::ymd_hms() %>% period_to_seconds()
ftc %>% as.factor %>% lubridate::ymd_hms()
ftc %>% as.factor %>% lubridate::ymd_hms() %>% class
ftc %>% as.factor %>% lubridate::ymd_hms()
ftc %>% lubridate::ymd_hms()
ftc <- ft %>% as.character()
ftc %>% lubridate::ymd_hms()
ftc %>% lubridate::ymd_hms() %>% class
ftc
ftc[1]
ftc[1:5]
ftc[1:5] %>% stringr::str_replace(":",".")
ftc[1:5] <- ftc[1:5] %>% stringr::str_replace(":",".") # create erraneous data
ftc
ftc %>% as.factor %>% lubridate::ymd_hms()
ftc %>% as.factor %>% lubridate::ymd_hms() %>% class
ftc
ftc %>% as.factor
ftc %>% as.factor %>% lubridate::ymd_hms()
ftc %>% as.factor %>% lubridate::ymd_hms() %>% period_to_seconds() %>% hms::as_hms()
ftc %>% lubridate::ymd_hms()
ftc
ftc %>% hms::as_hms()
ftc
require(stringr) # for generating character error
ftc <- ft %>% as.character()
ftc[1:5] <- ftc[1:5] %>% stringr::str_replace(":",".") # create erraneous data
ftc %>% lubridate::ymd_hms()
options(width=100)
knitr::opts_chunk$set(
eval = T, # run all code
echo = TRUE, # show code chunks in output
tidy = TRUE, # make output as tidy
message = FALSE, # mask all messages
warning = FALSE, # mask all warnings
comment = "",
tidy.opts=list(width.cutoff=100), # set width of code chunks in output
size="small" # set code chunk size
)
# install.packages("pacman")
pacman::p_load(stringr,stringi,dplyr,reprex,xml2,rvest)
# reprex = for rendering text string in HTML
# install.packages("pacman") # uncomment and install this first
pacman::p_load(stringr,stringi,dplyr,reprex,xml2,rvest)
require(xml2)# read html data
require(rvest) # select html elements
url <- "https://r4ds.had.co.nz/strings.html"
txt <- url %>% read_html %>% html_text() # scrape web text from url
txt %>% str
txt %>% str_length() # get length of vector
pat <- "strings" # string pattern to search for
txt %>% str_detect(pat) # returns logical if vector contains that pattern
txt %>% str_which(pat) # show which vector the pattern exists
txt %>% str_locate(pat) # show character positions of the first instance of pattern
txt %>% str_locate_all(pat) # show all positions
txt
txt[1:100]
rmarkdown::render_site()
options(width=100)
knitr::opts_chunk$set(
eval = T, # run all code
echo = TRUE, # show code chunks in output
tidy = TRUE, # make output as tidy
message = FALSE, # mask all messages
warning = FALSE, # mask all warnings
comment = "",
tidy.opts=list(width.cutoff=100), # set width of code chunks in output
size="small" # set code chunk size
)
packages <- c("ggplot2","ggthemes","dplyr","tidyverse","zoo","RColorBrewer","viridis","plyr")
if (require(packages)) {
install.packages(packages,dependencies = T)
require(packages)
# load tvthemes
devtools::install_github("Ryo-N7/tvthemes")
}
lapply(packages,library,character.only=T)
fh <- "Melbourne"
url <- "https://en.wikipedia.org/wiki/"
fh <- "Melbourne"
require(rvest)
url <- "https://en.wikipedia.org/wiki/"
fh <- "Melbourne"
paste0(url,fh) %>%
read_html() %>% # read webpage
html_nodes(":contains('infobox')")
paste0(url,fh) %>%
read_html() %>% # read webpage
html_nodes(":contains(infobox)")
identical(paste0(url,fh) %>%
read_html() %>% # read webpage
html_nodes(":contains(infobox)"),
paste0(url,fh) %>%
read_html() %>% # read webpage
html_nodes(":contains('infobox')")
)
paste0(url,fh) %>%
read_html() %>% # read webpage
html_nodes(":contains(.infobox)")
paste0(url,fh) %>%
read_html() %>% # read webpage
html_nodes(":contains('.infobox')")
paste0(url,fh) %>%
read_html() %>% # read webpage
html_nodes(":contains('.infobox')") %>% .[6]
paste0(url,fh) %>%
read_html() %>% # read webpage
html_nodes(":contains('.infobox')") %>% .[6] %>%
html_text
paste0(url,fh) %>%
read_html() %>% # read webpage
html_nodes(":contains('.infobox')") %>% .[6] %>%
html_structure()
xx <- LETTERS[1:10]
xx %>% unique
xx %>% rowMeans()
xx <- LETTERS[1:10]
browser()
1
2
xx %>% rowMeans()
xx <- LETTERS[1:10]
xx %>% rowMeans()
browser()
remove(xx)
clear
options(width=100)
knitr::opts_chunk$set(
eval = FALSE, # run all code
echo = TRUE, # show code chunks in output
tidy = TRUE, # make output as tidy
message = FALSE, # mask all messages
warning = FALSE, # mask all warnings
comment = "",
tidy.opts=list(width.cutoff=100), # set width of code chunks in output
size="small" # set code chunk size
)
glimpse(nyc)
length(nyc$id) # print length of 'id' column
ggplot(data = nyc) +
geom_point(mapping = aes(x = neighborhood_overview, y = price, colour =
neighborhood_overview), shape = 21, stroke = 1) +
my_theme
glimpse(nyc)
url <- "http://data.insideairbnb.com/united-states/ny/new-york-city/2021-04-07/data/listings.csv.gz"
nyc <- read_csv(url)
mpg
packages <- c("ggplot2","ggthemes","dplyr","tidyverse","zoo","RColorBrewer","viridis","plyr")
if (require(packages)) {
install.packages(packages,dependencies = T)
require(packages)
# load tvthemes
devtools::install_github("Ryo-N7/tvthemes")
}
lapply(packages,library,character.only=T)
install.packages("tidyverse") # install package
library(tidyverse) # load the package library
require(tidyverse) # same as library
install.packages("tidyverse")
str(mpg) # structure of data
glimpse(mpg) # preview of data
summary(mpg) # basic summary stats
table(mpg$manufacturer) # counts of each column
head(mpg) # visualise first 6 rows of data
tail(mpg,10) # visualise last 10 (or N) rows of data
names(mpg) # get column names
class(mpg) # class of data frame
class(mpg$manufacturer) # class of data column
mpg$displ # print a column
mpg$hwy # print a column
packages <- c("ggplot2","ggthemes","dplyr","tidyverse","zoo","RColorBrewer","viridis","plyr", "rlang")
if (require(packages)) {
install.packages(packages,dependencies = T)
require(packages)
# load tvthemes
# devtools::install_github("Ryo-N7/tvthemes")
}
lapply(packages,library,character.only=T)
install.packages("tidyverse") # install package
install.packages("tidyverse")
glimpse(nyc)
url <- "http://data.insideairbnb.com/united-states/ny/new-york-city/2021-04-07/data/listings.csv.gz"
nyc <- read_csv(url)
nyc <- nyc[nyc$id < 1000000,] # get smaller subet of data
length(nyc$id) # print length of 'id' column
glimpse(nyc)
nyc <- read_csv(url)
nyc <- nyc[nyc$id < 10000,] # get smaller subet of data
length(nyc$id) # print length of 'id' column
glimpse(nyc)
nyc <- read_csv(url)
nyc <- nyc[nyc$id < 10000,] # get smaller subet of data
length(nyc$id) # print length of 'id' column
str(nyc)
# smaller csv file (16 cols)
pacman::p_load(readr,dplyr)
url <- "http://data.insideairbnb.com/united-states/ny/new-york-city/2021-04-07/data/listings.csv.gz"
nyc <- read_csv(url)
nyc <- nyc[nyc$id < 1000000,] # get smaller subet of data
nyc_trunc <- nyc %>% filter(price < 200,
neighbourhood_group_cleansed != "Staten Island",
minimum_nights > 5 & minimum_nights < 15)
# smaller csv file (16 cols)
pacman::p_load(readr,dplyr)
url <- "http://data.insideairbnb.com/united-states/ny/new-york-city/2021-04-07/data/listings.csv.gz"
nyc <- read_csv(url)
nyc <- nyc[nyc$id < 20000,] # get smaller subet of data
nyc_trunc <- nyc %>% filter(price < 200,
neighbourhood_group_cleansed != "Staten Island",
minimum_nights > 5 & minimum_nights < 15)
nyc_trunc %>% glimpse
# ---------------------------------------
#
# the printout of your plotting code here
#
# ---------------------------------------
suppressWarnings(require(ggplot2))
ttl <- "Properties less than US$200 available between 5 and 15 nights"
subttl <- "across NYC boroughs except Staten Island"
xlab = "Price (US)"
ylab <- "Number of properties"
caption <- "Source: NYC Airbnb data"
legend_ttl <- "Boroughs"
ggplot(nyc_trunc,aes(price)) +
geom_histogram(binwidth = 20, aes(fill = neighbourhood_group_cleansed)) +
facet_grid(. ~ neighbourhood_group_cleansed) +
theme_classic() +
labs(title = ttl, subtitle = subttl, x = xlab, y = ylab, caption = caption, fill = legend_ttl)
suppressWarnings(require(ggplot2))
ttl <- "Properties less than US$200 available between 5 and 15 nights"
subttl <- "across NYC boroughs except Staten Island"
xlab = "Price (US)"
ylab <- "Number of properties"
caption <- "Source: NYC Airbnb data"
legend_ttl <- "Boroughs"
nyc_trunc %>% str
ggplot(nyc_trunc,aes(price)) +
geom_histogram(binwidth = 20, aes(fill = neighbourhood_group_cleansed)) +
facet_grid(. ~ neighbourhood_group_cleansed) +
theme_classic() +
labs(title = ttl, subtitle = subttl, x = xlab, y = ylab, caption = caption, fill = legend_ttl)
nyc_trunc %>% str
ggplot(nyc_trunc,aes(price)) +
geom_histogram(binwidth = 20, aes(fill = neighbourhood_group_cleansed))
nyc_trunc$neighbourhood_group_cleansed %>% class
ggplot(nyc_trunc,aes(price)) +
geom_histogram(binwidth = 20
) +
facet_grid(. ~ neighbourhood_group_cleansed) +
theme_classic() +
labs(title = ttl, subtitle = subttl, x = xlab, y = ylab, caption = caption, fill = legend_ttl)
ggplot(nyc_trunc,aes(price)) +
geom_histogram(binwidth = 20, aes(fill = neighbourhood_group_cleansed), stat = "count") +
facet_grid(. ~ neighbourhood_group_cleansed) +
theme_classic() +
labs(title = ttl, subtitle = subttl, x = xlab, y = ylab, caption = caption, fill = legend_ttl)
nyc <- nyc[nyc$id < 50000,] # get smaller subet of data
nyc_trunc <- nyc %>% filter(price < 200,
neighbourhood_group_cleansed != "Staten Island",
minimum_nights > 5 & minimum_nights < 15)
suppressWarnings(require(ggplot2))
ttl <- "Properties less than US$200 available between 5 and 15 nights"
subttl <- "across NYC boroughs except Staten Island"
xlab = "Price (US)"
ylab <- "Number of properties"
caption <- "Source: NYC Airbnb data"
legend_ttl <- "Boroughs"
ggplot(nyc_trunc,aes(price)) +
geom_histogram(binwidth = 20, aes(fill = neighbourhood_group_cleansed), stat = "count") +
facet_grid(. ~ neighbourhood_group_cleansed) +
theme_classic() +
labs(title = ttl, subtitle = subttl, x = xlab, y = ylab, caption = caption, fill = legend_ttl)
url <- "http://data.insideairbnb.com/united-states/ny/new-york-city/2021-04-07/data/listings.csv.gz"
nyc <- read_csv(url)
nyc <- nyc[nyc$id < 100000,] # get smaller subet of data
nyc_trunc <- nyc %>% filter(price < 200,
neighbourhood_group_cleansed != "Staten Island",
minimum_nights > 5 & minimum_nights < 15)
suppressWarnings(require(ggplot2))
ttl <- "Properties less than US$200 available between 5 and 15 nights"
subttl <- "across NYC boroughs except Staten Island"
xlab = "Price (US)"
ylab <- "Number of properties"
caption <- "Source: NYC Airbnb data"
legend_ttl <- "Boroughs"
ggplot(nyc_trunc,aes(price)) +
geom_histogram(binwidth = 20, aes(fill = neighbourhood_group_cleansed), stat = "count") +
facet_grid(. ~ neighbourhood_group_cleansed) +
theme_classic() +
labs(title = ttl, subtitle = subttl, x = xlab, y = ylab, caption = caption, fill = legend_ttl)
ggplot() +
geom_histogram(data = nyc_trunc,aes(price),
binwidth = 20, aes(fill = neighbourhood_group_cleansed)) +
facet_grid(. ~ neighbourhood_group_cleansed) +
theme_classic() +
labs(title = ttl, subtitle = subttl, x = xlab, y = ylab, caption = caption, fill = legend_ttl)
ggplot() +
geom_histogram(data = nyc_trunc,
aes(price, fill = neighbourhood_group_cleansed)) +
facet_grid(. ~ neighbourhood_group_cleansed)
ggplot() +
geom_histogram(data = nyc_trunc,
aes(price,fill = neighbourhood_group_cleansed),
binwidth = 20)
?geom_histogram
ggplot() +
?geom_histogram(data = nyc_trunc,
aes(price,fill = neighbourhood_group_cleansed),
stat = "bin",
binwidth = 20)
ggplot() +
geom_histogram(data = nyc_trunc,
aes(price,fill = neighbourhood_group_cleansed),
stat = "bin",
binwidth = 20)
ggplot() +
geom_histogram(data = nyc_trunc,
aes(price,fill = neighbourhood_group_cleansed),
stat = "bin",
binwidth = 20) +
scale_x_binned() +
facet_grid(. ~ neighbourhood_group_cleansed)
ggplot() +
geom_histogram(data = nyc_trunc,
aes(price,fill = neighbourhood_group_cleansed),
stat = "bin",
) +
facet_grid(. ~ neighbourhood_group_cleansed)
ggplot() +
geom_histogram(data = nyc_trunc,
aes(price,fill = neighbourhood_group_cleansed),
# stat = "bin",
binwidth = 20) +
facet_grid(. ~ neighbourhood_group_cleansed)
ggplot() +
geom_density(data = nyc_trunc,
aes(price,fill = neighbourhood_group_cleansed),
stat = "bin",
binwidth = 20) +
facet_grid(. ~ neighbourhood_group_cleansed)
ggplot() +
geom_density(data = nyc_trunc,
aes(price,fill = neighbourhood_group_cleansed),
# stat = "bin",
# binwidth = 20
)
ggplot() +
geom_density(data = nyc_trunc,
aes(price,fill = neighbourhood_group_cleansed),
# stat = "bin",
binwidth = 30
)
ggplot() +
geom_density(data = nyc_trunc,
aes(price,fill = neighbourhood_group_cleansed),
# stat = "bin",
binwidth = 100
)
ggplot() +
geom_density(data = nyc_trunc,
aes(price,fill = neighbourhood_group_cleansed),
# stat = "bin",
binwidth = 100
) +
facet_grid(. ~ neighbourhood_group_cleansed)
ggplot() +
geom_histogram(data = nyc_trunc,
aes(price,fill = neighbourhood_group_cleansed),
stat = "bin",
binwidth = 50)
ggplot() +
geom_histogram(data = nyc_trunc,
aes(price,fill = neighbourhood_group_cleansed),
# stat = "bin",
binwidth = 50)
nyc_trunc %>% str
ggplot() +
geom_histogram(data = nyc_trunc %>% str,
aes(price),
stat = "bin",
binwidth = 50) +
facet_grid(. ~ neighbourhood_group_cleansed) +
theme_classic()
ggplot() +
geom_histogram(data = nyc_trunc %>% str,
aes(price),
stat = "bin",
binwidth = 50)
nyc_trunc %>% names
nyc_trunc$neighbourhood
nyc_trunc$neighbourhood_cleansed
nyc_trunc$neighbourhood_group_cleansed
nyc_trunc$price
lapply(nyc$price,as,numeric)
lapply(nyc$price,as.numeric)
nyc$price %>% as.factor %>% as.numeric()
nyc %>%
mutate_at(price, as.factor, as.numeric)
nyc %>%
mutate_at(vars(price), as.factor, as.numeric)
nyc$price <- nyc$price %>% as.factor %>% as.numeric
ggplot() +
geom_histogram(data = nyc_trunc %>% str,
aes(price),
stat = "bin",
binwidth = 50)
nyc_trunc$price
nyc_trunc$price <- nyc_trunc$price %>% as.factor %>% as.numeric
nyc_trunc$price
pacman::p_load(readr,dplyr)
url <- "http://data.insideairbnb.com/united-states/ny/new-york-city/2021-04-07/data/listings.csv.gz"
nyc <- read_csv(url)
nyc <- nyc[nyc$id < 100000,] # get smaller subet of data
nyc_trunc <- nyc %>% filter(price < 200,
neighbourhood_group_cleansed != "Staten Island",
minimum_nights > 5 & minimum_nights < 15)
nyc_trunc$price
nyc_trunc$price %>% as.factor
nyc_trunc$price %>% as.factor %>% as.numeric
nyc_trunc$price %>% as.factor
nyc_trunc$price %>% as.factor %>% as.numeric
nyc_trunc$price %>% as.factor %>% as.integer()
nyc_trunc$price %>% as.integer()
url <- "https://www.imdb.com/title/tt0094625/?ref_=fn_al_tt_1"
url %>% read_html %>% html_table(trim = T) # get just tables
url <- "https://r4ds.had.co.nz/data-visualisation.html" # url to scrape
url %>% read_html # scrape HTML text and data
require(dplyr)
url %>% read_html # scrape HTML text and data
require(rvest)
require(xml2)
require(dplyr)
url %>% read_html # scrape HTML text and data
url %>% readr::read_html # scrape HTML text and data
url %>% rvest::read_html # scrape HTML text and data
url %>% rvest::read_html() # scrape HTML text and data
url <- "https://r4ds.had.co.nz/data-visualisation.html" # url to scrape
url %>% rvest::read_html() # scrape HTML text and data
require(rvest)
node("main") %>%
html_nodes("a") %>%
.[[3]] %>% # get the 3rd scraped term
html_text()
node <- function(n){
url %>% read_html %>% html_nodes(n) # n = user defined node
}
node("main") %>%
html_nodes("a") %>%
.[[3]] %>% # get the 3rd scraped term
html_text()
rmarkdown::render_site()
node("img") %>% html_attr("src") %>% extract2(3) %>% image_read()
node("img") %>% html_attr("src")
url <- "https://www.imdb.com/title/tt0094625/?ref_=fn_al_tt_1"
node("img") %>% html_attr("src")
node("img") %>% html_attr("src") %>% extract2(3)
rmarkdown::render_site()