forked from amzoss/ggplot2-F17
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathZZ-Templates.Rmd
618 lines (404 loc) · 15.2 KB
/
ZZ-Templates.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
---
title: "ggplot2 Templates"
author: "Angela Zoss"
date: "9/25/2017"
output: github_document
---
```{r}
knitr::opts_chunk$set(error = TRUE)
```
## Setup your environment
```{r}
# Load required libraries
library(tidyverse)
```
## Load your data
```{r}
# data comes from https://www.kaggle.com/uciml/adult-census-income
# adding a few settings to correct the data types of a couple of the columns
adult <- read_csv("data/adult.csv", na="?")
```
## Try a few charts
### Bar charts
```{r}
# Bar chart, automatically counting number of observations
ggplot(adult) +
geom_bar(aes(sex))
```
```{r}
# Bar chart, using another column for the length
ggplot(adult) +
geom_col(aes(x=sex, y=capital.loss))
# or you can use geom_bar and just change the default statistical function ("stat"),
# which is normally "count"
ggplot(adult) +
geom_bar(aes(sex, capital.loss), stat="identity")
# What does it do when you have multiple records for each category?
adult %>% group_by(sex) %>% summarise(total = sum(capital.loss))
```
```{r}
# Bar chart, using another column for length and specifying the summary function
ggplot(adult) +
geom_bar(aes(sex, capital.loss), stat="summary", fun.y="mean")
# In this case, geom_col doesn't work
ggplot(adult) +
geom_col(aes(sex, capital.loss), stat="summary", fun.y="mean")
```
```{r}
# You can also summarize numerical variables with a bar chart, but consider using histogram or density instead
ggplot(adult) +
geom_bar(aes(age))
ggplot(adult) +
geom_histogram(aes(age))
ggplot(adult) +
geom_histogram(aes(age), binwidth = 1)
ggplot(adult) +
geom_density(aes(age))
```
```{r}
# Adding another category - do you want to stack or dodge or fill?
# By default, a new category fills the bar (position="stack")
ggplot(adult) +
geom_bar(aes(sex, fill=race))
# Change position to "dodge" for side-by-side bars
ggplot(adult) +
geom_bar(aes(sex, fill=race), position="dodge")
# Change position to "fill" for bars scaled up to 100%
ggplot(adult) +
geom_bar(aes(sex, fill=race), position="fill")
```
```{r}
# Pie charts are... weird. In ggplot2, you make a pie chart by taking a single stacked bar and changing the coordinate system to coord_polar.
ggplot(adult) +
geom_bar(aes(x="", fill=sex))
ggplot(adult) +
geom_bar(aes(x="", fill=sex)) +
coord_polar("y")
# Can get rid of hole in the middle by specifying width = 1
ggplot(adult) +
geom_bar(aes(x="", fill=sex), width=1) +
coord_polar("y")
```
### Scatter plots
```{r}
# Scatter plots can show relationships between numerical variables, but be careful of overplotting (dots stacked on top of each other)
ggplot(adult) +
geom_point(aes(age, capital.loss))
ggplot(adult) +
geom_bin2d(aes(age, capital.loss))
# Note: if your counts are heavily skewed, you can apply a transformation on the color scale
ggplot(adult) +
geom_bin2d(aes(age, capital.loss)) +
scale_fill_continuous(trans="log10")
```
### Line charts
```{r}
# Line charts don't include any inherent summary, so individual data points get mapped and connected with a line
ggplot(adult) +
geom_line(aes(x=age, y=capital.loss))
ggplot(adult) +
geom_line(aes(x=age, y=capital.loss)) +
geom_point(aes(x=age, y=capital.loss))
# You can add your own function to summarize all of the y values at the same x value
ggplot(adult) +
geom_line(aes(x=age, y=capital.loss), stat="summary", fun.y=mean)
# Alternately, you can use geom_smooth to calculate a variety of summary lines
ggplot(adult) +
geom_smooth(aes(x=age, y=capital.loss))
ggplot(adult) +
geom_smooth(aes(x=age, y=capital.loss), method = "lm")
```
## Design the charts
### Titles
```{r}
# Adding main title and axis labels
ggplot(adult) +
geom_bar(aes(sex)) +
labs(title="This sample has about twice as many men as women.",
x="Sex",
y="Number of Respondents")
```
```{r}
# Changing the legend title is a little harder;
# you have to modify the "scale" properties for the non-axis variable
ggplot(adult) +
geom_bar(aes(sex, fill=race)) +
labs(title="This sample has about twice as many men as women.",
x="Sex",
y="Number of Respondents") +
scale_fill_discrete(name="Race/Ethnicity")
# The structure is: "scale_" plus whatever aesthetic property you're modifying (e.g., x, fill, size)
# plus either a.) the kind of variable it is (e.g., continuous, discrete) or
# b.) a special function that will be applied (e.g., log10, gradient)
# For example, you can't modify the name of the fill aesthetic if you treat it like a continuous variable
ggplot(adult) +
geom_bar(aes(sex, fill=race)) +
labs(title="This sample has about twice as many men as women.",
x="Sex",
y="Number of Respondents") +
scale_fill_continuous(name="Race/Ethnicity")
```
### Axes
```{r}
# ggplot2 does a pretty good job guessing what the axes should look like, but you can modify
# individual properties manually
# Changing axis properties requires adding a "scale" layer for one or both axes,
# just like modifying the legend properties
ggplot(adult) +
geom_point(aes(age, capital.gain)) +
scale_x_continuous(breaks=c(20,30,40,50,60,70,80,90))
# Gridlines often show up for both major and minor breaks. To turn off gridlines for minor
# breaks, an easy way is to set the minor breaks to NULL.
ggplot(adult) +
geom_point(aes(age, capital.gain)) +
scale_x_continuous(breaks=c(20,30,40,50,60,70,80,90), minor_breaks = NULL)
# Can also change how the numbers on the axis are spaces out, without doing any mathematical
# transformations to the data
ggplot(adult) +
geom_point(aes(age, capital.gain)) +
scale_x_continuous(breaks=c(20,30,40,50,60,70,80,90), minor_breaks = NULL) +
scale_y_log10()
# Note: log scale spreads out small values, but you can't plot the value "0" on a log scale,
# so we can filter those out first, then do some formatting on the breaks and labels
ggplot(adult %>% filter(capital.gain > 0)) +
geom_point(aes(age, capital.gain)) +
scale_x_continuous(breaks=c(20,30,40,50,60,70,80,90), minor_breaks = NULL) +
scale_y_log10(breaks=c(10,100,1000,10000,100000),
labels=function(x){format(x, scientific = FALSE, big.mark=",")})
```
### Coordinate systems
```{r}
# Coordinate layers help control the output of the chart
# coord_fixed helps normalize the units across the two axes;
# ratio = 1 means that each unit on the x axis is the same length as each unit on the y axis
# the syntax for ratio is y/x
ggplot(adult) +
geom_point(aes(age, capital.gain)) +
coord_fixed(ratio = 1)
# a 1:1 ratio for this chart is terrible; the y-axis goes from 0 to 100,000, while the
# x-axis goes from 17 to 90. To have the units look similar, each unit on the x-axis
# should be about 1,000 of the y-axis units.
ggplot(adult) +
geom_point(aes(age, capital.gain)) +
coord_fixed(ratio = 1/1000)
# Now the grid on the chart is approximately square
```
```{r}
# Another useful coord layer is coord_flip. Some charts require certain variables in
# certain slots. For example, geom_bar requires the categorical variable in the x
# position and the numerical variable in the y position
ggplot(adult) +
geom_bar(aes(x=sex))
ggplot(adult) +
geom_bar(aes(y=sex))
# To get the categories on the y-axis, you start with the category on the x-axis and then
# add the coord_flip
ggplot(adult) +
geom_bar(aes(x=sex)) +
coord_flip()
```
```{r}
# Scales can change the spacing of numbers on the axis - essentially, changing the grid
# against which the numbers are plotted
ggplot(adult %>% filter(capital.gain > 0)) +
geom_point(aes(age, capital.gain)) +
scale_y_log10(breaks=c(10,100,1000,10000,100000),
labels=function(x){format(x, scientific = FALSE, big.mark=",")})
# The coord_trans can also change the grid, but it still uses a cartesian approach to the
# major breaks
ggplot(adult %>% filter(capital.gain > 0)) +
geom_point(aes(age, capital.gain)) +
coord_trans(y="log10")
```
### Axis/legend labels
```{r}
# As we've already seen, the labels on a numerical axis can be changed by manually setting
# the breaks in the axis and/or formatting the labels
ggplot(adult) +
geom_point(aes(age, capital.gain))
ggplot(adult) +
geom_point(aes(age, capital.gain)) +
scale_x_continuous(breaks=c(20,30,40,50,60,70,80,90))
# regardless of the type of axis, you can set the labels to whatever you want
ggplot(adult) +
geom_point(aes(age, capital.gain)) +
scale_x_continuous(breaks=c(20,30,40,50,60,70,80,90),
labels=c("A","B","C","D","E","F","G","H"))
# the same works for a categorical variable, either on an axis or in a legend
ggplot(adult) +
geom_bar(aes(sex, fill=race)) +
scale_x_discrete(labels=c("A","B")) +
scale_fill_discrete(labels=c("A","B","C","D","E"))
```
```{r}
# The one thing you can't do with scales is change the order of the categories. For that,
# you have to turn the variable into a factor and specify the order in the "levels" setting
# of the factor() function
adult$sex <- factor(adult$sex, levels = c("Male","Female"))
adult$race <- factor(adult$race, levels = c("Other","Amer-Indian-Eskimo","Asian-Pac-Islander","Black","White"))
ggplot(adult) +
geom_bar(aes(sex, fill=race))
```
### Data labels
```{r}
# You can label charts with variables from the dataset or other calculated variables within the chart;
# just like other chart layers, geom_text layers need x and y positions, and they also require "label"
ggplot(adult) +
geom_bar(aes(sex)) +
geom_text(aes(sex, label=sex), stat="count")
# Note: geom_bar has stat="count" embedded within it. If we don't add that to the geom_text
# layer, the text layer will try to process each data point individually and will ask
# for a y value
# Instead of using the exact y position calculated by the stat_count function, you can
# nudge the label up or down. Remember, this "nudge" value needs to be in the same units
# as the axis.
ggplot(adult) +
geom_bar(aes(sex)) +
geom_text(aes(sex, label=..count..), stat="count", nudge_y = 1000)
# geom_label is like geom_text, but it formats the label differently
ggplot(adult) +
geom_bar(aes(sex)) +
geom_label(aes(sex, label=..count..), stat="count", nudge_y = 1000)
```
### Themes
```{r}
# Themes control the overall look and feel of the graph. Several themes are built in to ggplot2.
ggplot(adult) +
geom_bar(aes(sex)) +
theme_gray() +
ggtitle("Gray")
ggplot(adult) +
geom_bar(aes(sex)) +
theme_classic() +
ggtitle("Classic")
ggplot(adult) +
geom_bar(aes(sex)) +
theme_bw() +
ggtitle("Black and white")
ggplot(adult) +
geom_bar(aes(sex)) +
theme_dark() +
ggtitle("Dark")
ggplot(adult) +
geom_bar(aes(sex)) +
theme_light() +
ggtitle("Light")
ggplot(adult) +
geom_bar(aes(sex)) +
theme_minimal() +
ggtitle("Minimal")
ggplot(adult) +
geom_bar(aes(sex)) +
theme_void() +
ggtitle("Void")
```
```{r}
# If the preset themes are insufficient, individual properties can be redefined with theme()
ggplot(adult) +
geom_bar(aes(sex)) +
theme_bw() +
theme(panel.background = element_rect(fill="pink"))
# you can also use themes to remove grid lines without removing tick marks
ggplot(adult) +
geom_bar(aes(sex)) +
theme(panel.grid.major.y = element_blank())
```
### Annotation
```{r}
# Earlier, we used geom_text for data labels. We can also use it for general notes on the graph.
ggplot(adult) +
geom_point(aes(age, capital.gain)) +
geom_text(x=25,y=75000,label="A note goes here.")
# This is suboptimal, though, because a text object that doesn't relate to the data will process
# slowly. In this case, the chart is actually drawing a separate text object for every data point
# in the dataframe.
# Instead, use annotate for unrelated text objects
# Note: you have to specify a "geom" for each annotation - text, rect, segment, pointrange
ggplot(adult) +
geom_point(aes(age, capital.gain)) +
annotate("text",x=25,y=75000,label="A note goes here.")
ggplot(adult) +
geom_point(aes(age, capital.gain)) +
annotate("rect",xmin=12, xmax=95, ymin=25000, ymax=50000, alpha=.2)
```
### Colors
```{r}
# Most charts use x and y axes to display variables, but you can usually also add another variable to
# the chart by mapping it to color.
# Note - some geoms use the "color" aesthetic (e.g., geom_point), while others use "fill" (e.g., geom_bar)
ggplot(adult) +
geom_point(aes(age, capital.gain, fill=race))
ggplot(adult) +
geom_point(aes(age, capital.gain, color=race))
ggplot(adult) +
geom_bar(aes(sex, fill=race))
ggplot(adult) +
geom_bar(aes(sex, color=race))
```
```{r}
# You can change the colors of the chart elements using pre-defined palettes or by manually
# selecting colors
# You can apply pre-defined palettes to a fill or color aesthetic using a scale.
# A useful pre-defined palette is the grey palette, which uses shades of grey to keep a chart
# black and white
ggplot(adult) +
geom_bar(aes(sex, fill=race)) +
scale_fill_grey()
# The grey palette picks shades of grey between the start and end value, which by default are 0.2 and 0.8.
# The values can be reversed or made larger or smaller.
ggplot(adult) +
geom_bar(aes(sex, fill=race)) +
scale_fill_grey(start=0.8, end=0.2)
# Other default palettes include palettes from colorbrewer2.org
ggplot(adult) +
geom_bar(aes(sex, fill=race)) +
scale_fill_brewer(palette="Dark2")
ggplot(adult) +
geom_bar(aes(sex, fill=race)) +
scale_fill_brewer(palette="Dark2", direction=-1)
```
```{r}
# Specifying colors manually is as simple as giving a vector of colors to a "manual" scale
ggplot(adult) +
geom_bar(aes(sex, fill=race)) +
scale_fill_manual(values=c("cadetblue3","lightpink2","lightskyblue3","lightsalmon2","olivedrab3"))
# R knows names for some colors, but others will need to be specified with codes
ggplot(adult) +
geom_bar(aes(sex, fill=race)) +
scale_fill_manual(values=c("#ffffd4","#fed98e","#fe9929","#d95f0e","#993404"))
# For continuous numbers, you can also use scale_color_gradient or scale_fill_gradient
ggplot(adult) +
geom_point(aes(age, capital.gain, color=age))
ggplot(adult) +
geom_point(aes(age, capital.gain, color=age)) +
scale_color_gradient(low="gray80",high="gray20")
# Color Brewer palettes can be used with continuous numbers, but you use "distiller"
# instead of "brewer"
ggplot(adult) +
geom_point(aes(age, capital.gain, color=age)) +
scale_color_distiller(palette="Greens")
```
### Facets
```{r}
# Facets are some of the most useful layers when you have a large amount of data. Facets create
# "small multiples", or a series of charts that each has the same specification but that visualizes
# a different subset of the data. You can think of it as splitting the data into chunks and then
# visualizing each chunk the same way.
# facet_wrap creates a series of charts split by one category and then wraps the charts into
# multiple rows as needed
ggplot(adult) +
geom_point(aes(age, hours.per.week)) +
geom_smooth(aes(age, hours.per.week)) +
facet_wrap(~education)
# facet_grid allows you to split the data by one category in the y direction and another in the x
# syntax: facet_grid(y~x)
# Note: you can use a "." to ignore one direction
ggplot(adult) +
geom_point(aes(age, hours.per.week)) +
geom_smooth(aes(age, hours.per.week)) +
facet_grid(.~race)
ggplot(adult) +
geom_point(aes(age, hours.per.week)) +
geom_smooth(aes(age, hours.per.week)) +
facet_grid(sex~race)
```