-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathStochastic-GEP-two-stage-Benders.jl
183 lines (146 loc) · 5.12 KB
/
Stochastic-GEP-two-stage-Benders.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Two-Stage Stochastic Generation Expansion Planning
"""
create_first_stage_model(sets, params)
This function creates the first-stage problem in the Benders' Decomposition.
# Arguments
- `sets::Dict{Symbol, Any}`: A dictionary containing the sets of the problem.
- `params::Dict{Symbol, Any}`: A dictionary containing the parameters of the problem.
# Returns
- `model::Model`: JuMP model with the first-stage problem.
"""
function create_first_stage_model(sets, params)
# Extract sets
G = sets[:G]
# Extract parameters
p_investment_cost = params[:investment_cost]
p_unit_capacity = params[:unit_capacity]
# Scalar values
M = -1000 # to avoid the problem is unbounded
# Model
model = Model(
optimizer_with_attributes(HiGHS.Optimizer, "mip_rel_gap" => 0.0, "output_flag" => false),
)
# Variables
@variable(model, 0 ≤ v_investment[G], Int) #number of installed generation units [N]
@variable(model, v_theta ≥ M) #Benders' cut
# Expressions
e_investment_cost = @expression(
model,
sum(p_investment_cost[g] * p_unit_capacity[g] * v_investment[g] for g in G)
)
# Objective function
@objective(model, Min, e_investment_cost + v_theta)
return model
end
"""
create_and_solve_subproblem(sets, params)
This function creates the subproblem in the Benders' Decomposition.
# Arguments
- `sets::Dict{Symbol, Any}`: A dictionary containing the sets of the problem.
- `params::Dict{Symbol, Any}`: A dictionary containing the parameters of the problem.
- `p_investment::Array{Float64}`: The optimal investment solution from the subproblem.
# Returns
- `model::Model`: JuMP model with the subproblem.
"""
function create_and_solve_subproblem(sets, params, p_investment)
# Extract sets
SC = sets[:SC]
G = sets[:G]
P = sets[:P]
# Extract parameters
p_availability = params[:availability]
p_demand = params[:demand]
p_variable_cost = params[:variable_cost]
p_unit_capacity = params[:unit_capacity]
p_sc_prob = params[:sc_prob]
p_rp_weight = params[:rp_weight]
p_ens_cost = params[:ens_cost]
# Model
model = Model(optimizer_with_attributes(HiGHS.Optimizer, "output_flag" => false))
# Variables
@variable(model, 0 ≤ v_production[SC, G, P]) #production [MW]
@variable(model, 0 ≤ v_ens[SC, p in P] ≤ p_demand[p]) #energy not supplied [MW]
# Expressions
e_variable_cost = @expression(
model,
p_rp_weight * sum(
p_sc_prob[sc] * p_variable_cost[g] * v_production[sc, g, p] for sc in SC, g in G,
p in P
)
)
e_ens_cost = @expression(
model,
p_rp_weight * sum(p_sc_prob[sc] * p_ens_cost * v_ens[sc, p] for sc in SC, p in P)
)
# Objective function
@objective(model, Min, e_variable_cost + e_ens_cost)
# Constraints
# - balance equation
@constraint(
model,
c_balance[sc in SC, p in P],
sum(v_production[sc, g, p] for g in G) + v_ens[sc, p] == p_demand[p]
)
# - maximum generation
@constraint(
model,
c_max_prod[sc in SC, g in G, p in P],
v_production[sc, g, p] <=
get(p_availability, (sc, g, p), 1.0) * p_unit_capacity[g] * p_investment[g]
)
# Solve model
optimize!(model)
# Check if the model is optimal
@assert is_solved_and_feasible(model; dual = true) # Check if the model is optimal and there is a dual solution
# Return results
return model
end
"""
add_cut(sets, params)
This function creates the cut to add in Benders' Decomposition algorithm.
# Arguments
- `first_stage_model::Model`: The first-stage model.
- `subproblem::NamedTuple`: The subproblem results.
- `sets::Dict{Symbol, Any}`: A dictionary containing the sets of the problem.
- `params::Dict{Symbol, Any}`: A dictionary containing the parameters of the problem.
- `iteration::Int`: The current iteration number.
# Returns
- `nothing`
"""
function add_cut(first_stage_model, subproblem, sets, params, p_investment, iteration)
# Extract sets
SC = sets[:SC]
G = sets[:G]
P = sets[:P]
# Extract parameters
p_availability = params[:availability]
p_unit_capacity = params[:unit_capacity]
p_sc_prob = params[:sc_prob]
# Get parameters from the subproblem
p_subproblem_obj = objective_value(subproblem)
p_dual = dual.(subproblem[:c_max_prod])
# Add Benders' cut
@constraint(
first_stage_model,
base_name = "cut_iter_$(iteration)",
first_stage_model[:v_theta] >=
p_subproblem_obj + sum(
-p_dual[sc, g, p] *
get(p_availability, (sc, g, p), 1.0) *
p_unit_capacity[g] *
(p_investment[g] - first_stage_model[:v_investment][g]) for sc in SC, g in G, p in P
)
)
return nothing
end
"""
print_iteration(iteration)
Prints the current iteration number.
# Arguments
- `iteration`: An integer representing the current iteration number.
"""
function print_iteration(k, args...)
f(x) = Printf.@sprintf("%12.4e", x)
println(lpad(k, 9), " ", join(f.(args), " "))
return
end