-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathpretrain_encoder.py
147 lines (123 loc) · 5.88 KB
/
pretrain_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
from torch import nn
from torch.utils.data import DataLoader
import torchvision.datasets as dset
import torchvision.transforms as transforms
import time
import numpy as np
import argparse
import os
from models.models_encoder import CNNDecoderSimple, CNNEncoderSimple, CNNEncoderSimpleForContextAttention
from utils.utils import ensure_dir, save_cnn_plots
def run_epoch(epoch, dataloader, encoder, decoder, optimizer, criterion, is_eval=False, save_plots=False, dir_plots=""):
losses = []
if is_eval:
encoder.eval()
decoder.eval()
else:
encoder.train()
decoder.train()
for i, data in enumerate(dataloader):
if i % (10000 // 16) == 0:
print(f"{i}/{len(dataloader)}")
z, _ = data
z = z * 2 - 1
z = z.to(device="cuda:0")
# ===================forward=====================
h = encoder(z)
output = decoder(h)
loss = criterion(output, z)
losses.append(loss.detach())
# ===================backward====================
if not is_eval:
optimizer.zero_grad()
loss.backward()
optimizer.step()
# =====================plot======================
if save_plots:
save_cnn_plots(epoch + 1, i, z.detach(), output.detach(), plot_each=1, dir_plots=dir_plots)
loss = torch.FloatTensor(losses).mean()
return loss
def main():
# =====================parse args=======================
print(ARGS)
num_epochs = ARGS.epochs
batch_size = ARGS.batch_size
learning_rate = ARGS.lr_rate
dataset_path = ARGS.dataset_path + f"/{ARGS.step}"
max_time = ARGS.max_time
context_attention_string = "_for_context_attention" if ARGS.context_attention else ""
dir_checkpoint = f'./output_cnn/CNN_autoencoder/checkpoints{context_attention_string}'
dir_plots = f'./output_cnn/CNN_autoencoder/plots{context_attention_string}'
ensure_dir(dir_checkpoint)
ensure_dir(dir_plots)
if not os.path.exists(dataset_path):
raise FileNotFoundError
device = torch.device(ARGS.device)
np.random.seed(ARGS.seed)
torch.manual_seed(ARGS.seed)
if device != "cpu":
torch.cuda.manual_seed(ARGS.seed)
# =====================import data======================
print("\nLoading datasets ...")
transform = transforms.Compose([
transforms.Grayscale(),
transforms.ToTensor(),
])
dataset_train = dset.ImageFolder(root=f'{dataset_path}/train', transform=transform)
dataset_valid = dset.ImageFolder(root=f'{dataset_path}/valid', transform=transform)
dataloader_train = torch.utils.data.DataLoader(dataset_train, batch_size=batch_size, shuffle=True)
dataloader_valid = torch.utils.data.DataLoader(dataset_valid, batch_size=batch_size, shuffle=False)
print("Dataset splits -> Train: {} | Valid: {}".format(len(dataset_train), len(dataset_valid)))
# =====================init models======================
# input and output of the encoder-decoder are 64x64 images
if ARGS.context_attention:
encoder = CNNEncoderSimpleForContextAttention().to(device=device) # no linear layers, but conv2D 1x1
else:
encoder = CNNEncoderSimple().to(device=device) # two linear layers to output visual features
decoder = CNNDecoderSimple().to(device=device)
criterion = nn.MSELoss(reduction='mean')
optimizer = torch.optim.Adam(list(encoder.parameters()) + list(decoder.parameters()), lr=learning_rate,
weight_decay=1e-5)
min_loss_valid = 1000000
start_time = time.time()
# ========================train=========================
print("Starting training ...\n")
for epoch in range(num_epochs):
if time.time() - start_time > max_time:
break
loss_train = run_epoch(epoch, dataloader_train, encoder, decoder, optimizer, criterion, is_eval=False,
save_plots=False)
loss_valid = run_epoch(epoch, dataloader_valid, encoder, decoder, optimizer, criterion, is_eval=True,
save_plots=True, dir_plots=dir_plots)
print('Epoch {}/{} |, Train loss: {:.4f} | Valid loss: {:.4f}'
.format(epoch + 1, num_epochs, loss_train.item(), loss_valid.item()))
# =====================save models======================
if min_loss_valid > loss_valid:
min_loss_valid = loss_valid
torch.save(encoder.state_dict(), dir_checkpoint + '/CNN_encoder.pth')
torch.save(decoder.state_dict(), dir_checkpoint + '/CNN_decoder.pth')
print("\nTraining Completed!")
print("Minimum loss on validation set:", min_loss_valid)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--seed', default=42, type=int,
help='random seed')
parser.add_argument('--max_time', default=36000, type=int,
help='maximum time in seconds for training')
parser.add_argument('--epochs', default=15, type=int,
help='max number of epochs')
parser.add_argument('--device', default="cuda:0", type=str,
help='training device')
parser.add_argument('--batch_size', default=16, type=int,
help='size of each batch')
parser.add_argument('--lr_rate', default=3e-4, type=float,
help='learning rate')
parser.add_argument('--dataset_path', default="./data", type=str,
help='data path')
parser.add_argument('--step', default=0.001, type=float,
help='Step used to generate the data')
parser.add_argument('--context_attention', default=True, type=bool,
help='choose between CNNEncoderSimple and CNNEncoderSimpleForContextAttention')
ARGS = parser.parse_args()
main()