-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcartpole_LDDP.py
279 lines (226 loc) · 9.64 KB
/
cartpole_LDDP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
from DDP import *
import pdb
class CartPoleEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 250
}
def __init__(self):
self.gravity = 9.8
self.masscart = 1.0
self.masspole = 0.1
self.total_mass = (self.masspole + self.masscart)
self.length = 0.5 # actually half the pole's length
self.polemass_length = (self.masspole * self.length)
self.force_mag = 10.0
self.tau = 0.02 # seconds between state updates
# Angle at which to fail the episode
self.theta_threshold_radians = 12 * 2 * math.pi / 360
self.x_threshold = 2.4
# Angle limit set to 2 * theta_threshold_radians so failing observation is still within bounds
high = np.array([
self.x_threshold * 2,
np.finfo(np.float32).max,
self.theta_threshold_radians * 2,
np.finfo(np.float32).max])
action_high = np.array([self.force_mag * 100])
self.action_space = spaces.Box(-action_high, action_high)
self.observation_space = spaces.Box(-high, high)
self._seed()
self.viewer = None
self.state = None
self.steps_beyond_done = None
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def _simulateReward(self, state):
x, x_dot, theta, theta_dot = state
#reward = - (99 * abs(theta - 0) + 1 * abs(x - 0))
reward = - 100 * abs(theta - 0)
return reward
def _simulateStep(self, state, action):
x, x_dot, theta, theta_dot = state
force = action[0]
costheta = math.cos(theta)
sintheta = math.sin(theta)
temp = (force + self.polemass_length * theta_dot * theta_dot * sintheta) / self.total_mass
thetaacc = (self.gravity * sintheta - costheta* temp) / (self.length * (4.0/3.0 - self.masspole * costheta * costheta / self.total_mass))
xacc = temp - self.polemass_length * thetaacc * costheta / self.total_mass
x = x + self.tau * x_dot + xacc * self.tau**2 / 2
x_dot = x_dot + self.tau * xacc
theta = theta + self.tau * theta_dot + thetaacc * self.tau**2 / 2
theta_dot = theta_dot + self.tau * thetaacc
next_state = np.array([x, x_dot, theta, theta_dot])
reward = self._simulateReward(next_state)
done = False
return next_state, reward, done, {}
def simulateStep(self, state, action):
return self._simulateStep(state, action)
def simulateReward(self, state):
return self._simulateReward(state)
def _step(self, action):
state = self.state
next_state, reward, done, _info = self._simulateStep(state, action)
self.state = next_state
return self.state, reward, done, _info
def _reset(self):
self.state = self.np_random.uniform(low=-0.05, high=0.05, size=(4,))
self.steps_beyond_done = None
return np.array(self.state)
def _render(self, mode='human', close=False):
if close:
if self.viewer is not None:
self.viewer.close()
self.viewer = None
return
screen_width = 600
screen_height = 400
world_width = self.x_threshold*2
scale = screen_width/world_width
carty = 100 # TOP OF CART
polewidth = 10.0
polelen = scale * 1.0
cartwidth = 50.0
cartheight = 30.0
if self.viewer is None:
from gym.envs.classic_control import rendering
self.viewer = rendering.Viewer(screen_width, screen_height)
l,r,t,b = -cartwidth/2, cartwidth/2, cartheight/2, -cartheight/2
axleoffset =cartheight/4.0
cart = rendering.FilledPolygon([(l,b), (l,t), (r,t), (r,b)])
self.carttrans = rendering.Transform()
cart.add_attr(self.carttrans)
self.viewer.add_geom(cart)
l,r,t,b = -polewidth/2,polewidth/2,polelen-polewidth/2,-polewidth/2
pole = rendering.FilledPolygon([(l,b), (l,t), (r,t), (r,b)])
pole.set_color(.8,.6,.4)
self.poletrans = rendering.Transform(translation=(0, axleoffset))
pole.add_attr(self.poletrans)
pole.add_attr(self.carttrans)
self.viewer.add_geom(pole)
self.axle = rendering.make_circle(polewidth/2)
self.axle.add_attr(self.poletrans)
self.axle.add_attr(self.carttrans)
self.axle.set_color(.5,.5,.8)
self.viewer.add_geom(self.axle)
self.track = rendering.Line((0,carty), (screen_width,carty))
self.track.set_color(0,0,0)
self.viewer.add_geom(self.track)
if self.state is None: return None
x = self.state
cartx = x[0]*scale+screen_width/2.0 # MIDDLE OF CART
self.carttrans.set_translation(cartx, carty)
self.poletrans.set_rotation(-x[2])
return self.viewer.render(return_rgb_array = mode=='rgb_array')
def solve_actions(env, init_state, simulation_timesteps):
SIMULATION_TIMESTEPS = simulation_timesteps
INIT_ACTION = np.array([0.])
DERIVATIVE_ACCURACY = 0.001
LEARNING_RATE = 0.025
# nodes
nodes = []
for i in range(SIMULATION_TIMESTEPS + 1):
node = DynamicsSystemNode('timestep_' + str(i))
if (i < SIMULATION_TIMESTEPS):
node.next_primitive_name = 'move_' + str(i)
node.ssa.updateActionElement('action_' + str(i), INIT_ACTION.copy())
if (i > 0):
node.prev_primitive_name = 'move_' + str(i-1)
nodes.append(node)
nodes[0].ssa.updateStateElement('state', init_state)
# dynamics models
dynamics_models = []
for i in range(SIMULATION_TIMESTEPS):
dynamics = DynamicsSystemEdgeDynamicsModel()
def make_dynamics_func (i):
def dynamics_func (ssa):
next_ssa = ssa.copy()
state = ssa.retrive('state')
action = ssa.retrive('action_' + str(i))
next_state, reward, done, _info = env.simulateStep(state, action)
next_ssa.updateStateElement('state', next_state)
ns = nodes
return next_ssa
return dynamics_func
dynamics.dynamics_func = make_dynamics_func(i)
def make_dynamics_dfunc (i):
def dynamics_dfunc (ssa):
state = ssa.retrive('state')
action = ssa.retrive('action_' + str(i))
next_state, reward, done, _info = env.simulateStep(state, action)
shift_next_state, shift_reward, shift_done, _shift_info = env.simulateStep(state, action + DERIVATIVE_ACCURACY)
d_state_action = np.array([(shift_next_state - next_state) / DERIVATIVE_ACCURACY])
d = {}
d['state'] = {}
d['state']['action_' + str(i)] = d_state_action
return d
return dynamics_dfunc
dynamics.dynamics_dfunc = make_dynamics_dfunc(i)
def make_reward_func (i):
def reward_func (next_ssa):
next_state = next_ssa.retrive('state')
reward = env.simulateReward(next_state)
return reward
return reward_func
dynamics.reward_func = make_reward_func(i)
def make_reward_dfunc (i):
def reward_dfunc (next_ssa):
next_state = next_ssa.retrive('state')
reward = env.simulateReward(next_state)
d_reward_state = np.zeros((next_state.shape[0]))
for i in range(next_state.shape[0]):
shift_next_state_i = next_state.copy()
shift_next_state_i[i] += DERIVATIVE_ACCURACY
shift_reward_i = env.simulateReward(shift_next_state_i)
d_reward_state[i] = (shift_reward_i - reward) / DERIVATIVE_ACCURACY
d = {}
d['state'] = d_reward_state
return d
return reward_dfunc
dynamics.reward_dfunc = make_reward_dfunc(i)
dynamics_models.append(dynamics)
# dynamics system
dynamics_system = LinearDynamicsSystem()
for i in range(len(nodes)):
dynamics_system.updateNode('timestep_' + str(i), nodes[i])
dynamics_system.updateRootNodeName('timestep_0')
for i in range(len(dynamics_models)):
dynamics_system.updateDynamics(
'move_' + str(i), \
'timestep_' + str(i), dynamics_models[i], 'timestep_' + str(i+1), \
alpha=LEARNING_RATE)
# execute
def optimizeActions_shouldStop (indicators):
if indicators['rounds'] > 120:
return True
if indicators['value'] > -50.0:
return True
return False
dynamics_system.optimizeActions(optimizeActions_shouldStop, verbose=1)
# export action sequence
actions = []
for i in range(SIMULATION_TIMESTEPS):
node = nodes[i]
actions.append(node.ssa.retrive('action_' + str(i)))
return actions
if __name__ == '__main__':
env = CartPoleEnv()
init_state = env.reset()
simulation_timesteps = 50
actions = solve_actions(env, init_state, simulation_timesteps)
#print(actions)
print('init_state: {}'.format(init_state))
env.render()
timestep = 0
for timestep in range(simulation_timesteps):
action = actions[timestep]
state, reward, done, _ = env.step(action)
print('action: {}, reward: {}, state: {}'.format(action, np.round(reward, 2), np.round(state, 2)))
env.render()
if done:
break