-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
356 lines (284 loc) · 14.5 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
from torch_scatter import scatter_max
from transformers import BertModel, BertTokenizer
def return_mask_lengths(ids):
mask = torch.sign(ids).float()
lengths = mask.sum(dim=1).long()
return mask, lengths
def return_num(model):
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
return params
def cal_attn(left, right, mask):
mask = (1.0 - mask.float()) * -10000.0
attn_logits = torch.matmul(left, right.transpose(-1, -2).contiguous())
attn_logits = attn_logits + mask
attn_weights = F.softmax(input=attn_logits, dim=-1)
attn_outputs = torch.matmul(attn_weights, right)
return attn_outputs, attn_logits
class Embedding(nn.Module):
def __init__(self, bert_model):
super(Embedding, self).__init__()
bert_embeddings = BertModel.from_pretrained(bert_model).embeddings
self.word_embeddings = bert_embeddings.word_embeddings
self.token_type_embeddings = bert_embeddings.token_type_embeddings
self.position_embeddings = bert_embeddings.position_embeddings
self.LayerNorm = bert_embeddings.LayerNorm
self.dropout = bert_embeddings.dropout
def forward(self, input_ids, token_type_ids=None, position_ids=None):
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
if position_ids is None:
seq_length = input_ids.size(1)
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
words_embeddings = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
position_embeddings = self.position_embeddings(position_ids)
embeddings = words_embeddings + token_type_embeddings + position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class ContextualizedEmbedding(nn.Module):
def __init__(self, bert_model):
super(ContextualizedEmbedding, self).__init__()
bert = BertModel.from_pretrained(bert_model)
self.embedding = bert.embeddings
self.encoder = bert.encoder
self.num_hidden_layers = bert.config.num_hidden_layers
def forward(self, input_ids, attention_mask, token_type_ids=None):
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
seq_length = input_ids.size(1)
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2).float()
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
head_mask = [None] * self.num_hidden_layers
embedding_output = self.embedding(input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
encoder_outputs = self.encoder(embedding_output,
extended_attention_mask,
head_mask=head_mask)
sequence_output = encoder_outputs[0]
return sequence_output
class KLLoss(nn.Module):
def __init__(self):
super(KLLoss, self).__init__()
def forward(self, P, Q):
log_P = P.log()
log_Q = Q.log()
kl = (P * (log_P - log_Q)).sum(dim=-1).sum(dim=-1)
return kl
class CustomLSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, dropout, bidirectional=False):
super(CustomLSTM, self).__init__()
self.num_layers = num_layers
self.hidden_size = hidden_size
self.bidirectional = bidirectional
self.dropout = nn.Dropout(dropout)
if dropout > 0.0 and num_layers == 1:
dropout = 0.0
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size,
num_layers=num_layers, dropout=dropout,
bidirectional=bidirectional, batch_first=True)
def forward(self, input, input_lengths, state=None):
batch_size, total_length, _ = input.size()
input_packed = pack_padded_sequence(input, input_lengths,
batch_first=True, enforce_sorted=False)
self.lstm.flatten_parameters()
output_packed, state = self.lstm(input_packed, state)
output = pad_packed_sequence(output_packed, batch_first=True, total_length=total_length)[0]
output = self.dropout(output)
return output, state
class ContextEncoderforQG(nn.Module):
def __init__(self, embedding, emsize,
nhidden, nlayers,
dropout=0.0):
super(ContextEncoderforQG, self).__init__()
self.embedding = embedding
self.nhidden = nhidden
self.nlayers = nlayers
self.context_lstm = CustomLSTM(input_size=emsize,
hidden_size=nhidden,
num_layers=nlayers,
dropout=dropout,
bidirectional=True)
self.context_linear = nn.Linear(2 * nhidden, 2 * nhidden)
self.fusion = nn.Linear(4 * nhidden, 2 * nhidden, bias=False)
self.gate = nn.Linear(4 * nhidden, 2 * nhidden, bias=False)
def forward(self, c_ids, a_ids):
c_mask, c_lengths = return_mask_lengths(c_ids)
c_embeddings = self.embedding(c_ids, c_mask, a_ids)
c_outputs, c_state = self.context_lstm(c_embeddings, c_lengths)
c_state = (c_state[0].view(self.nlayers, 2, -1, self.nhidden).contiguous(),
c_state[1].view(self.nlayers, 2, -1, self.nhidden).contiguous())
c_state = (c_state[0].transpose(1, 2).contiguous(),
c_state[1].transpose(1, 2).contiguous())
c_state = (c_state[0].view(self.nlayers, -1, 2*self.nhidden).contiguous(),
c_state[1].view(self.nlayers, -1, 2*self.nhidden).contiguous())
# attention
mask = torch.matmul(c_mask.unsqueeze(2), c_mask.unsqueeze(1))
c_attned_by_c, _ = cal_attn(self.context_linear(c_outputs),
c_outputs,
mask)
c_concat = torch.cat([c_outputs, c_attned_by_c], dim=2)
c_fused = self.fusion(c_concat).tanh()
c_gate = self.gate(c_concat).sigmoid()
c_outputs = c_gate * c_fused + (1 - c_gate) * c_outputs
return c_outputs, c_state
class QuestionDecoder(nn.Module):
def __init__(self, sos_id, eos_id,
embedding, contextualized_embedding, emsize,
nhidden, ntokens, nlayers,
dropout=0.0,
max_q_len=64):
super(QuestionDecoder, self).__init__()
self.sos_id = sos_id
self.eos_id = eos_id
self.emsize = emsize
self.embedding = embedding
self.nhidden = nhidden
self.ntokens = ntokens
self.nlayers = nlayers
# this max_len include sos eos
self.max_q_len = max_q_len
self.context_lstm = ContextEncoderforQG(contextualized_embedding, emsize,
nhidden // 2, nlayers, dropout)
self.question_lstm = CustomLSTM(input_size=emsize,
hidden_size=nhidden,
num_layers=nlayers,
dropout=dropout,
bidirectional=False)
self.question_linear = nn.Linear(nhidden, nhidden)
self.concat_linear = nn.Sequential(nn.Linear(2*nhidden, 2*nhidden),
nn.Dropout(dropout),
nn.Linear(2*nhidden, 2*emsize))
self.logit_linear = nn.Linear(emsize, ntokens, bias=False)
# fix output word matrix
self.logit_linear.weight = embedding.word_embeddings.weight
for param in self.logit_linear.parameters():
param.requires_grad = False
def postprocess(self, q_ids):
eos_mask = q_ids == self.eos_id
no_eos_idx_sum = (eos_mask.sum(dim=1) == 0).long() * (self.max_q_len - 1)
eos_mask = eos_mask.cpu().numpy()
q_lengths = np.argmax(eos_mask, axis=1) + 1
q_lengths = torch.tensor(q_lengths).to(q_ids.device).long() + no_eos_idx_sum
batch_size, max_len = q_ids.size()
idxes = torch.arange(0, max_len, out=torch.LongTensor(max_len))
idxes = idxes.unsqueeze(0).to(q_ids.device).repeat(batch_size, 1)
q_mask = (idxes < q_lengths.unsqueeze(1))
q_ids = q_ids.long() * q_mask.long()
return q_ids
def forward(self, c_ids, q_ids, a_ids):
batch_size, max_q_len = q_ids.size()
c_outputs, init_state = self.context_lstm(c_ids, a_ids)
c_mask, c_lengths = return_mask_lengths(c_ids)
q_mask, q_lengths = return_mask_lengths(q_ids)
# question dec
q_embeddings = self.embedding(q_ids)
q_outputs, _ = self.question_lstm(q_embeddings, q_lengths, init_state)
# attention
mask = torch.matmul(q_mask.unsqueeze(2), c_mask.unsqueeze(1))
c_attned_by_q, attn_logits = cal_attn(self.question_linear(q_outputs),
c_outputs,
mask)
# gen logits
q_concated = torch.cat([q_outputs, c_attned_by_q], dim=2)
q_concated = self.concat_linear(q_concated)
q_maxouted, _ = q_concated.view(batch_size, max_q_len, self.emsize, 2).max(dim=-1)
gen_logits = self.logit_linear(q_maxouted)
# copy logits
bq = batch_size * max_q_len
c_ids = c_ids.unsqueeze(1).repeat(1, max_q_len, 1).view(bq, -1).contiguous()
attn_logits = attn_logits.view(bq, -1).contiguous()
copy_logits = torch.zeros(bq, self.ntokens).to(c_ids.device)
copy_logits = copy_logits - 10000.0
copy_logits, _ = scatter_max(attn_logits, c_ids, out=copy_logits)
copy_logits = copy_logits.masked_fill(copy_logits == -10000.0, 0)
copy_logits = copy_logits.view(batch_size, max_q_len, -1).contiguous()
logits = gen_logits + copy_logits
return logits
def generate(self, c_ids, a_ids):
c_mask, c_lengths = return_mask_lengths(c_ids)
c_outputs, init_state = self.context_lstm(c_ids, a_ids)
batch_size = c_ids.size(0)
q_ids = torch.LongTensor([self.sos_id] * batch_size).unsqueeze(1)
q_ids = q_ids.to(c_ids.device)
token_type_ids = torch.zeros_like(q_ids)
position_ids = torch.zeros_like(q_ids)
q_embeddings = self.embedding(q_ids, token_type_ids, position_ids)
state = init_state
# unroll
all_q_ids = list()
all_q_ids.append(q_ids)
for _ in range(self.max_q_len - 1):
position_ids = position_ids + 1
q_outputs, state = self.question_lstm.lstm(q_embeddings, state)
# attention
mask = c_mask.unsqueeze(1)
c_attned_by_q, attn_logits = cal_attn(self.question_linear(q_outputs),
c_outputs,
mask)
# gen logits
q_concated = torch.cat([q_outputs, c_attned_by_q], dim=2)
q_concated = self.concat_linear(q_concated)
q_maxouted, _ = q_concated.view(batch_size, 1, self.emsize, 2).max(dim=-1)
gen_logits = self.logit_linear(q_maxouted)
# copy logits
attn_logits = attn_logits.squeeze(1)
copy_logits = torch.zeros(batch_size, self.ntokens).to(c_ids.device)
copy_logits = copy_logits - 10000.0
copy_logits, _ = scatter_max(attn_logits, c_ids, out=copy_logits)
copy_logits = copy_logits.masked_fill(copy_logits == -10000.0, 0)
logits = gen_logits + copy_logits.unsqueeze(1)
q_ids = torch.argmax(logits, 2)
all_q_ids.append(q_ids)
q_embeddings = self.embedding(q_ids, token_type_ids, position_ids)
q_ids = torch.cat(all_q_ids, 1)
q_ids = self.postprocess(q_ids)
return q_ids
class QG(nn.Module):
def __init__(self, args):
super(QG, self).__init__()
tokenizer = BertTokenizer.from_pretrained(args.bert_model)
padding_idx = tokenizer.vocab['[PAD]']
sos_id = tokenizer.vocab['[CLS]']
eos_id = tokenizer.vocab['[SEP]']
ntokens = len(tokenizer.vocab)
bert_model = args.bert_model
if "large" in bert_model:
emsize = 1024
else:
emsize = 768
self.dec_q_nhidden = dec_q_nhidden = args.dec_q_nhidden
self.dec_q_nlayers = dec_q_nlayers = args.dec_q_nlayers
dec_q_dropout = args.dec_q_dropout
max_q_len = args.max_q_len
embedding = Embedding(bert_model)
contextualized_embedding = ContextualizedEmbedding(bert_model)
for param in embedding.parameters():
param.requires_grad = False
for param in contextualized_embedding.parameters():
param.requires_grad = False
self.question_decoder = QuestionDecoder(sos_id, eos_id,
embedding, contextualized_embedding, emsize,
dec_q_nhidden, ntokens, dec_q_nlayers,
dec_q_dropout,
max_q_len)
self.q_rec_criterion = nn.CrossEntropyLoss(ignore_index=padding_idx)
def forward(self, c_ids, q_ids, a_ids):
# question decoding
q_logits = self.question_decoder(c_ids, q_ids, a_ids)
# q rec loss
loss_q_rec = self.q_rec_criterion(q_logits[:, :-1, :].transpose(1, 2).contiguous(),
q_ids[:, 1:])
loss = loss_q_rec
return loss
def generate(self, c_ids, a_ids):
q_ids = self.question_decoder.generate(c_ids, a_ids)
return q_ids