-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathblake2b.js
365 lines (327 loc) · 9.33 KB
/
blake2b.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
// Blake2B in pure Javascript
// Adapted from the reference implementation in RFC7693
// Ported to Javascript by DC - https://github.com/dcposch
const util = require('./util')
// 64-bit unsigned addition
// Sets v[a,a+1] += v[b,b+1]
// v should be a Uint32Array
function ADD64AA (v, a, b) {
const o0 = v[a] + v[b]
let o1 = v[a + 1] + v[b + 1]
if (o0 >= 0x100000000) {
o1++
}
v[a] = o0
v[a + 1] = o1
}
// 64-bit unsigned addition
// Sets v[a,a+1] += b
// b0 is the low 32 bits of b, b1 represents the high 32 bits
function ADD64AC (v, a, b0, b1) {
let o0 = v[a] + b0
if (b0 < 0) {
o0 += 0x100000000
}
let o1 = v[a + 1] + b1
if (o0 >= 0x100000000) {
o1++
}
v[a] = o0
v[a + 1] = o1
}
// Little-endian byte access
function B2B_GET32 (arr, i) {
return arr[i] ^ (arr[i + 1] << 8) ^ (arr[i + 2] << 16) ^ (arr[i + 3] << 24)
}
// G Mixing function
// The ROTRs are inlined for speed
function B2B_G (a, b, c, d, ix, iy) {
const x0 = m[ix]
const x1 = m[ix + 1]
const y0 = m[iy]
const y1 = m[iy + 1]
ADD64AA(v, a, b) // v[a,a+1] += v[b,b+1] ... in JS we must store a uint64 as two uint32s
ADD64AC(v, a, x0, x1) // v[a, a+1] += x ... x0 is the low 32 bits of x, x1 is the high 32 bits
// v[d,d+1] = (v[d,d+1] xor v[a,a+1]) rotated to the right by 32 bits
let xor0 = v[d] ^ v[a]
let xor1 = v[d + 1] ^ v[a + 1]
v[d] = xor1
v[d + 1] = xor0
ADD64AA(v, c, d)
// v[b,b+1] = (v[b,b+1] xor v[c,c+1]) rotated right by 24 bits
xor0 = v[b] ^ v[c]
xor1 = v[b + 1] ^ v[c + 1]
v[b] = (xor0 >>> 24) ^ (xor1 << 8)
v[b + 1] = (xor1 >>> 24) ^ (xor0 << 8)
ADD64AA(v, a, b)
ADD64AC(v, a, y0, y1)
// v[d,d+1] = (v[d,d+1] xor v[a,a+1]) rotated right by 16 bits
xor0 = v[d] ^ v[a]
xor1 = v[d + 1] ^ v[a + 1]
v[d] = (xor0 >>> 16) ^ (xor1 << 16)
v[d + 1] = (xor1 >>> 16) ^ (xor0 << 16)
ADD64AA(v, c, d)
// v[b,b+1] = (v[b,b+1] xor v[c,c+1]) rotated right by 63 bits
xor0 = v[b] ^ v[c]
xor1 = v[b + 1] ^ v[c + 1]
v[b] = (xor1 >>> 31) ^ (xor0 << 1)
v[b + 1] = (xor0 >>> 31) ^ (xor1 << 1)
}
// Initialization Vector
const BLAKE2B_IV32 = new Uint32Array([
0xf3bcc908, 0x6a09e667, 0x84caa73b, 0xbb67ae85, 0xfe94f82b, 0x3c6ef372,
0x5f1d36f1, 0xa54ff53a, 0xade682d1, 0x510e527f, 0x2b3e6c1f, 0x9b05688c,
0xfb41bd6b, 0x1f83d9ab, 0x137e2179, 0x5be0cd19
])
const SIGMA8 = [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 14, 10, 4, 8, 9, 15, 13,
6, 1, 12, 0, 2, 11, 7, 5, 3, 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1,
9, 4, 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8, 9, 0, 5, 7, 2, 4,
10, 15, 14, 1, 11, 12, 6, 8, 3, 13, 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5,
15, 14, 1, 9, 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11, 13, 11, 7,
14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10, 6, 15, 14, 9, 11, 3, 0, 8, 12, 2,
13, 7, 1, 4, 10, 5, 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0, 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 14, 10, 4, 8, 9, 15, 13, 6,
1, 12, 0, 2, 11, 7, 5, 3
]
// These are offsets into a uint64 buffer.
// Multiply them all by 2 to make them offsets into a uint32 buffer,
// because this is Javascript and we don't have uint64s
const SIGMA82 = new Uint8Array(
SIGMA8.map(function (x) {
return x * 2
})
)
// Compression function. 'last' flag indicates last block.
// Note we're representing 16 uint64s as 32 uint32s
const v = new Uint32Array(32)
const m = new Uint32Array(32)
function blake2bCompress (ctx, last) {
let i = 0
// init work variables
for (i = 0; i < 16; i++) {
v[i] = ctx.h[i]
v[i + 16] = BLAKE2B_IV32[i]
}
// low 64 bits of offset
v[24] = v[24] ^ ctx.t
v[25] = v[25] ^ (ctx.t / 0x100000000)
// high 64 bits not supported, offset may not be higher than 2**53-1
// last block flag set ?
if (last) {
v[28] = ~v[28]
v[29] = ~v[29]
}
// get little-endian words
for (i = 0; i < 32; i++) {
m[i] = B2B_GET32(ctx.b, 4 * i)
}
// twelve rounds of mixing
// uncomment the DebugPrint calls to log the computation
// and match the RFC sample documentation
// util.debugPrint(' m[16]', m, 64)
for (i = 0; i < 12; i++) {
// util.debugPrint(' (i=' + (i < 10 ? ' ' : '') + i + ') v[16]', v, 64)
B2B_G(0, 8, 16, 24, SIGMA82[i * 16 + 0], SIGMA82[i * 16 + 1])
B2B_G(2, 10, 18, 26, SIGMA82[i * 16 + 2], SIGMA82[i * 16 + 3])
B2B_G(4, 12, 20, 28, SIGMA82[i * 16 + 4], SIGMA82[i * 16 + 5])
B2B_G(6, 14, 22, 30, SIGMA82[i * 16 + 6], SIGMA82[i * 16 + 7])
B2B_G(0, 10, 20, 30, SIGMA82[i * 16 + 8], SIGMA82[i * 16 + 9])
B2B_G(2, 12, 22, 24, SIGMA82[i * 16 + 10], SIGMA82[i * 16 + 11])
B2B_G(4, 14, 16, 26, SIGMA82[i * 16 + 12], SIGMA82[i * 16 + 13])
B2B_G(6, 8, 18, 28, SIGMA82[i * 16 + 14], SIGMA82[i * 16 + 15])
}
// util.debugPrint(' (i=12) v[16]', v, 64)
for (i = 0; i < 16; i++) {
ctx.h[i] = ctx.h[i] ^ v[i] ^ v[i + 16]
}
// util.debugPrint('h[8]', ctx.h, 64)
}
// reusable parameterBlock
const parameterBlock = new Uint8Array([
0,
0,
0,
0, // 0: outlen, keylen, fanout, depth
0,
0,
0,
0, // 4: leaf length, sequential mode
0,
0,
0,
0, // 8: node offset
0,
0,
0,
0, // 12: node offset
0,
0,
0,
0, // 16: node depth, inner length, rfu
0,
0,
0,
0, // 20: rfu
0,
0,
0,
0, // 24: rfu
0,
0,
0,
0, // 28: rfu
0,
0,
0,
0, // 32: salt
0,
0,
0,
0, // 36: salt
0,
0,
0,
0, // 40: salt
0,
0,
0,
0, // 44: salt
0,
0,
0,
0, // 48: personal
0,
0,
0,
0, // 52: personal
0,
0,
0,
0, // 56: personal
0,
0,
0,
0 // 60: personal
])
// Creates a BLAKE2b hashing context
// Requires an output length between 1 and 64 bytes
// Takes an optional Uint8Array key
// Takes an optinal Uint8Array salt
// Takes an optinal Uint8Array personal
function blake2bInit (outlen, key, salt, personal) {
if (outlen === 0 || outlen > 64) {
throw new Error('Illegal output length, expected 0 < length <= 64')
}
if (key && key.length > 64) {
throw new Error('Illegal key, expected Uint8Array with 0 < length <= 64')
}
if (salt && salt.length !== 16) {
throw new Error('Illegal salt, expected Uint8Array with length is 16')
}
if (personal && personal.length !== 16) {
throw new Error('Illegal personal, expected Uint8Array with length is 16')
}
// state, 'param block'
const ctx = {
b: new Uint8Array(128),
h: new Uint32Array(16),
t: 0, // input count
c: 0, // pointer within buffer
outlen: outlen // output length in bytes
}
// initialize parameterBlock before usage
parameterBlock.fill(0)
parameterBlock[0] = outlen
if (key) parameterBlock[1] = key.length
parameterBlock[2] = 1 // fanout
parameterBlock[3] = 1 // depth
if (salt) parameterBlock.set(salt, 32)
if (personal) parameterBlock.set(personal, 48)
// initialize hash state
for (let i = 0; i < 16; i++) {
ctx.h[i] = BLAKE2B_IV32[i] ^ B2B_GET32(parameterBlock, i * 4)
}
// key the hash, if applicable
if (key) {
blake2bUpdate(ctx, key)
// at the end
ctx.c = 128
}
return ctx
}
// Updates a BLAKE2b streaming hash
// Requires hash context and Uint8Array (byte array)
function blake2bUpdate (ctx, input) {
for (let i = 0; i < input.length; i++) {
if (ctx.c === 128) {
// buffer full ?
ctx.t += ctx.c // add counters
blake2bCompress(ctx, false) // compress (not last)
ctx.c = 0 // counter to zero
}
ctx.b[ctx.c++] = input[i]
}
}
// Completes a BLAKE2b streaming hash
// Returns a Uint8Array containing the message digest
function blake2bFinal (ctx) {
ctx.t += ctx.c // mark last block offset
while (ctx.c < 128) {
// fill up with zeros
ctx.b[ctx.c++] = 0
}
blake2bCompress(ctx, true) // final block flag = 1
// little endian convert and store
const out = new Uint8Array(ctx.outlen)
for (let i = 0; i < ctx.outlen; i++) {
out[i] = ctx.h[i >> 2] >> (8 * (i & 3))
}
return out
}
// Computes the BLAKE2B hash of a string or byte array, and returns a Uint8Array
//
// Returns a n-byte Uint8Array
//
// Parameters:
// - input - the input bytes, as a string, Buffer or Uint8Array
// - key - optional key Uint8Array, up to 64 bytes
// - outlen - optional output length in bytes, default 64
// - salt - optional salt bytes, string, Buffer or Uint8Array
// - personal - optional personal bytes, string, Buffer or Uint8Array
function blake2b (input, key, outlen, salt, personal) {
// preprocess inputs
outlen = outlen || 64
input = util.normalizeInput(input)
if (salt) {
salt = util.normalizeInput(salt)
}
if (personal) {
personal = util.normalizeInput(personal)
}
// do the math
const ctx = blake2bInit(outlen, key, salt, personal)
blake2bUpdate(ctx, input)
return blake2bFinal(ctx)
}
// Computes the BLAKE2B hash of a string or byte array
//
// Returns an n-byte hash in hex, all lowercase
//
// Parameters:
// - input - the input bytes, as a string, Buffer, or Uint8Array
// - key - optional key Uint8Array, up to 64 bytes
// - outlen - optional output length in bytes, default 64
// - salt - optional salt bytes, string, Buffer or Uint8Array
// - personal - optional personal bytes, string, Buffer or Uint8Array
function blake2bHex (input, key, outlen, salt, personal) {
const output = blake2b(input, key, outlen, salt, personal)
return util.toHex(output)
}
module.exports = {
blake2b: blake2b,
blake2bHex: blake2bHex,
blake2bInit: blake2bInit,
blake2bUpdate: blake2bUpdate,
blake2bFinal: blake2bFinal
}