-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexperiment.py
189 lines (153 loc) · 7.06 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# ======================= [built-in modules] =======================
import os
import time
# ====================== [third-party modules] =====================
import yaml
from box import Box
import numpy as np
from datasets import load_dataset
from bert_score import score as bert_score
from rouge_score import rouge_scorer
import matplotlib.pyplot as plt
# ======================= [custom modules] =========================
from utils.eval_similarity import *
from utils.utils import *
from utils.segment_embedding import *
from utils.concat_functions import *
from utils.summarizer import *
# ========================= [Load config] ===========================
with open("config.yaml", "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
config = Box(config)
print('Experiment name:', config.experiment_name)
print('===============================================')
# ========================== [Load data] ============================
print("Loading data... ", end="", flush=True)
if config.data.source == 'opensource':
datasets = load_dataset(config.data.opensource)
indices = np.load(f'data/gov_indices{config.data.index_set}.npy')
datasets = datasets['train'].select(indices)['report']
elif config.data.source == 'youtube':
datasets = load_dataset(config.data.youtube)
indices = np.load(f'data/ytb_indices{config.data.index_set}.npy')
datasets = datasets['train'].select(indices)['content']
print("Done")
print('===============================================')
save_dir_path = os.path.join('experiments', f'{config.experiment_name}')
if not os.path.exists(save_dir_path):
os.makedirs(save_dir_path)
# ========================== [Run experiments] ==========================
max_score = 0
best_summary = ""
evaluation_results = []
for di, text in enumerate(datasets):
print(f" ----------------- [{di+1}/{len(datasets)}] ----------------- ")
init_s = time.time()
# ========================== [Segmentation] ========================
print("Segmentating... ", end="", flush=True)
s = time.time()
segments = segmentate_sentence(text, **config.segment.args)
e = time.time()
print("Done", f"{e-s:.2f} sec")
# ========================== [Clustering] ==========================
print("Clustering... ", end="", flush=True)
s = time.time()
concat_indices = globals()[config.concat.method](segments, **config.concat.args)
e = time.time()
print("Done", f"{e-s:.2f} sec")
max_group_size = max([len(group) for group in concat_indices])
avg_group_size = np.mean([len(group) for group in concat_indices])
print(f"Num. of Cluster: {len(concat_indices)}, Max group size: {max_group_size}, Avg. group size: {avg_group_size:.2f}")
# ========================== [Ready to summarize] ==================
batch_clusters = [ #주제별로 문장들이 합쳐져서 있음
" ".join([segments[gi] for gi in group]) for group in concat_indices
]
# ========================== [Summarize] ===========================
print("Summarizing... ", end="", flush=True)
s = time.time()
if config.mini_batch.size > 0:
mini_batch_size = (len(batch_clusters)
if len(batch_clusters) < config.mini_batch.size else
config.mini_batch.size)
batch_summaries = []
for i in range(0, len(batch_clusters), mini_batch_size):
mini_batch_summaries = summarizer(batch_clusters[i:i+mini_batch_size], **config.summary.args)
batch_summaries.append(mini_batch_summaries)
batch_summaries = " ".join(batch_summaries)
else:
batch_summaries = summarizer(batch_clusters, **config.summary.args)
e = time.time()
print("Done", f"{e-s:.2f} sec")
# ========================== [Evaluate] ============================
print("Evaluating... ", end="", flush=True)
s = time.time()
rouge1, rouge2, rougeL = calculate_rouge_scores(text, batch_summaries)
b_score = calculate_bert_score(text, batch_summaries)
# scale score * 100
rouge1, rouge2, rougeL = rouge1*100, rouge2*100, rougeL*100
b_score = b_score * 100
e = time.time()
print("Done", f"{e-s:.2f} sec")
print(f"=> ROUGE-1: {rouge1:.2f}, ROUGE-2: {rouge2:.2f}, ROUGE-L: {rougeL:.2f}")
print(f"=> BERTScore: {b_score:.2f}")
# ========================== [Post-process] ========================
if b_score > max_score: # score는 대소비교 가능한 1가지 방식을 이용
max_score = b_score
best_summary = batch_summaries
best_index = di
# 원본 텍스트의 index는 indices[di]로 찾을 수 있음
evaluation_results.append({
'rouge1': rouge1,
'rouge2': rouge2,
'rougeL': rougeL,
'bert_score': b_score
})
print(f"Total: {time.time()-init_s:.2f} sec")
# append summary and scores to text file (cummulative)
# if there is no file, create one
if config.save_summaries:
with open(f'experiments/{config.experiment_name}/summaries.txt', 'a') as f:
f.write(f"==================== [{di+1}/{len(datasets)}] ====================\n")
# f.write(f"Original text:\n{text}\n\n")
f.write(f"Summary:\n{batch_summaries}\n\n")
f.write(f"ROUGE-1: {rouge1:.2f}, ROUGE-2: {rouge2:.2f}, ROUGE-L: {rougeL:.2f}\n")
f.write(f"BERTScore: {b_score:.2f}\n\n")
f.write("==============================================\n")
print("===============================================")
# ====================== [Save experiment result] ======================
print("Saving evaluation results... ")
# Copy config file
os.system(f'cp config.yaml {save_dir_path}')
# Make README.md
with open(os.path.join(save_dir_path, 'README.md'), 'w') as f:
f.write(f'# {config.experiment_name}\n')
# Save best summary & index
with open(os.path.join(save_dir_path, 'best_summary.txt'), 'w') as f:
f.write(f"Best index: {best_index}\n\n")
f.write(best_summary)
# plot evaluation results
metrics = list(evaluation_results[0].keys())
data_by_metric = {metric: [sample[metric] for sample in evaluation_results] for metric in metrics}
statistics = {}
for metric, values in data_by_metric.items():
statistics[metric] = {
'mean': np.mean(values),
'var': np.var(values),
'min': np.min(values),
'max': np.max(values)
}
# print and save statistics in results.txt
for metric, stats in statistics.items():
print(f"{metric}: mean={stats['mean']:.3f}, var={stats['var']:.3f}, min={stats['min']:.3f}, max={stats['max']:.3f}")
with open(os.path.join(save_dir_path, 'results.txt'), 'a') as f:
f.write(f"{metric}: mean={stats['mean']:.3f}, var={stats['var']:.3f}, min={stats['min']:.3f}, max={stats['max']:.3f}\n")
for metric, values in data_by_metric.items():
plt.figure(figsize=(8, 5))
plt.hist(values, bins=10, edgecolor='black', alpha=0.7)
plt.title(f'Distribution of {metric}')
plt.xlabel(metric)
plt.ylabel('count')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.savefig(os.path.join(save_dir_path, f'{metric}_histogram.png'))
plt.close()
print("Done")