forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodule.py
133 lines (111 loc) · 5.11 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Union, List, Tuple
import paddle
from paddle import nn
import paddle.nn.functional as F
import numpy as np
from paddlehub.module.module import moduleinfo
import paddlehub.vision.segmentation_transforms as T
from paddlehub.module.cv_module import ImageSegmentationModule
from fcn_hrnetw48_voc.hrnet import HRNet_W48
import fcn_hrnetw48_voc.layers as layers
@moduleinfo(
name="fcn_hrnetw48_voc",
type="CV/semantic_segmentation",
author="paddlepaddle",
author_email="",
summary="Fcn_hrnetw48 is a segmentation model.",
version="1.0.0",
meta=ImageSegmentationModule)
class FCN(nn.Layer):
"""
A simple implementation for FCN based on PaddlePaddle.
The original article refers to
Evan Shelhamer, et, al. "Fully Convolutional Networks for Semantic Segmentation"
(https://arxiv.org/abs/1411.4038).
Args:
num_classes (int): The unique number of target classes.
backbone_indices (tuple, optional): The values in the tuple indicate the indices of output of backbone.
Default: (-1, ).
channels (int, optional): The channels between conv layer and the last layer of FCNHead.
If None, it will be the number of channels of input features. Default: None.
align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature
is even, e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
pretrained (str, optional): The path or url of pretrained model. Default: None
"""
def __init__(self,
num_classes: int = 21,
backbone_indices: Tuple[int] = (-1, ),
channels: int = None,
align_corners: bool = False,
pretrained: str = None):
super(FCN, self).__init__()
self.backbone = HRNet_W48()
backbone_channels = [self.backbone.feat_channels[i] for i in backbone_indices]
self.head = FCNHead(num_classes, backbone_indices, backbone_channels, channels)
self.align_corners = align_corners
self.transforms = T.Compose([T.Normalize()])
if pretrained is not None:
model_dict = paddle.load(pretrained)
self.set_dict(model_dict)
print("load custom parameters success")
else:
checkpoint = os.path.join(self.directory, 'model.pdparams')
model_dict = paddle.load(checkpoint)
self.set_dict(model_dict)
print("load pretrained parameters success")
def transform(self, img: Union[np.ndarray, str]) -> Union[np.ndarray, str]:
return self.transforms(img)
def forward(self, x: paddle.Tensor) -> List[paddle.Tensor]:
feat_list = self.backbone(x)
logit_list = self.head(feat_list)
return [
F.interpolate(logit, paddle.shape(x)[2:], mode='bilinear', align_corners=self.align_corners)
for logit in logit_list
]
class FCNHead(nn.Layer):
"""
A simple implementation for FCNHead based on PaddlePaddle
Args:
num_classes (int): The unique number of target classes.
backbone_indices (tuple, optional): The values in the tuple indicate the indices of output of backbone.
Default: (-1, ).
backbone_channels (tuple): The values of backbone channels.
Default: (270, ).
channels (int, optional): The channels between conv layer and the last layer of FCNHead.
If None, it will be the number of channels of input features. Default: None.
pretrained (str, optional): The path of pretrained model. Default: None
"""
def __init__(self,
num_classes: int,
backbone_indices: Tuple[int] = (-1, ),
backbone_channels: Tuple[int] = (270, ),
channels: int = None):
super(FCNHead, self).__init__()
self.num_classes = num_classes
self.backbone_indices = backbone_indices
if channels is None:
channels = backbone_channels[0]
self.conv_1 = layers.ConvBNReLU(
in_channels=backbone_channels[0], out_channels=channels, kernel_size=1, padding='same', stride=1)
self.cls = nn.Conv2D(in_channels=channels, out_channels=self.num_classes, kernel_size=1, stride=1, padding=0)
def forward(self, feat_list: nn.Layer) -> List[paddle.Tensor]:
logit_list = []
x = feat_list[self.backbone_indices[0]]
x = self.conv_1(x)
logit = self.cls(x)
logit_list.append(logit)
return logit_list