-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilities.py
198 lines (150 loc) · 6.38 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from monai.utils import first
import matplotlib.pyplot as plt
import torch
import os
import numpy as np
from monai.losses import DiceLoss
from tqdm import tqdm
def get_device():
if torch.cuda.is_available():
device = torch.device("cuda:0") # Use GPU
print("CUDA is available. Using GPU.")
else:
device = torch.device("cpu") # Use CPU
print("CUDA is not available. Using CPU.")
return device
def dice_metric(predicted, target):
'''
In this function we take `predicted` and `target` (label) to calculate the dice coeficient then we use it
to calculate a metric value for the training and the validation.
'''
dice_value = DiceLoss(to_onehot_y=True, sigmoid=True, squared_pred=True)
value = 1 - dice_value(predicted, target).item()
return value
def calculate_weights(val1, val2):
'''
In this function we take the number of the background and the forgroud pixels to return the `weights`
for the cross entropy loss values.
'''
count = np.array([val1, val2])
summ = count.sum()
weights = count/summ
weights = 1/weights
summ = weights.sum()
weights = weights/summ
return torch.tensor(weights, dtype=torch.float32)
def train(model, data_in, loss, optim, max_epochs=5, test_interval=1 , device=get_device()):
print(data_in)
best_metric = -1
best_metric_epoch = -1
save_loss_train = []
save_loss_test = []
save_metric_train = []
save_metric_test = []
train_loader, test_loader = data_in
print(data_in)
for epoch in range(max_epochs):
print("-" * 10)
print(f"epoch {epoch + 1}/{max_epochs}")
model.train()
train_epoch_loss = 0
train_step = 0
epoch_metric_train = 0
for batch_data in train_loader:
train_step += 1
volume = batch_data["vol"]
label = batch_data["seg"]
label = label != 0
volume, label = (volume.to(device), label.to(device))
optim.zero_grad()
outputs = model(volume)
train_loss = loss(outputs, label)
train_loss.backward()
optim.step()
train_epoch_loss += train_loss.item()
print(
f"{train_step}/{len(train_loader) // train_loader.batch_size}, "
f"Train_loss: {train_loss.item():.4f}")
train_metric = dice_metric(outputs, label)
epoch_metric_train += train_metric
print(f'Train_dice: {train_metric:.4f}')
print('-'*20)
train_epoch_loss /= train_step
print(f'Epoch_loss: {train_epoch_loss:.4f}')
save_loss_train.append(train_epoch_loss)
# np.save(os.path.join(model_dir, 'loss_train.npy'), save_loss_train)
epoch_metric_train /= train_step
print(f'Epoch_metric: {epoch_metric_train:.4f}')
save_metric_train.append(epoch_metric_train)
# np.save(os.path.join(model_dir, 'metric_train.npy'), save_metric_train)
if (epoch + 1) % test_interval == 0:
model.eval()
with torch.no_grad():
test_epoch_loss = 0
test_metric = 0
epoch_metric_test = 0
test_step = 0
for test_data in test_loader:
test_step += 1
test_volume = test_data["vol"]
test_label = test_data["seg"]
test_label = test_label != 0
test_volume, test_label = (test_volume.to(device), test_label.to(device),)
test_outputs = model(test_volume)
test_loss = loss(test_outputs, test_label)
test_epoch_loss += test_loss.item()
test_metric = dice_metric(test_outputs, test_label)
epoch_metric_test += test_metric
test_epoch_loss /= test_step
print(f'test_loss_epoch: {test_epoch_loss:.4f}')
save_loss_test.append(test_epoch_loss)
# np.save(os.path.join(model_dir, 'loss_test.npy'), save_loss_test)
epoch_metric_test /= test_step
print(f'test_dice_epoch: {epoch_metric_test:.4f}')
save_metric_test.append(epoch_metric_test)
# np.save(os.path.join(model_dir, 'metric_test.npy'), save_metric_test)
# if epoch_metric_test > best_metric:
# best_metric = epoch_metric_test
# best_metric_epoch = epoch + 1
# torch.save(model.state_dict(), os.path.join(
# model_dir, "best_metric_model.pth"))
print(
f"current epoch: {epoch + 1} current mean dice: {test_metric:.4f}"
f"\nbest mean dice: {best_metric:.4f} "
f"at epoch: {best_metric_epoch}"
)
print(
f"train completed, best_metric: {best_metric:.4f} "
f"at epoch: {best_metric_epoch}")
def show_patient(data, SLICE_NUMBER=1, train=True, test=False):
check_patient_train, check_patient_test = data
view_train_patient = first(check_patient_train)
view_test_patient = first(check_patient_test)
if train:
plt.figure("Visualization Train", (12, 6))
plt.subplot(1, 2, 1)
plt.title(f"vol {SLICE_NUMBER}")
plt.imshow(view_train_patient["vol"][0, 0, :, :, SLICE_NUMBER], cmap="gray")
plt.subplot(1, 2, 2)
plt.title(f"seg {SLICE_NUMBER}")
plt.imshow(view_train_patient["seg"][0, 0, :, :, SLICE_NUMBER])
plt.show()
if test:
plt.figure("Visualization Test", (12, 6))
plt.subplot(1, 2, 1)
plt.title(f"vol {SLICE_NUMBER}")
plt.imshow(view_test_patient["vol"][0, 0, :, :, SLICE_NUMBER], cmap="gray")
plt.subplot(1, 2, 2)
plt.title(f"seg {SLICE_NUMBER}")
plt.imshow(view_test_patient["seg"][0, 0, :, :, SLICE_NUMBER])
plt.show()
def calculate_pixels(data):
val = np.zeros((1, 2))
for batch in tqdm(data):
batch_label = batch["seg"] != 0
_, count = np.unique(batch_label, return_counts=True)
if len(count) == 1:
count = np.append(count, 0)
val += count
print('The last values:', val)
return val