-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfig5.py
141 lines (119 loc) · 5.3 KB
/
fig5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
from collections import OrderedDict
import fire
import numpy as np
import scipy.stats
import seaborn
from matplotlib import pyplot
from brainscore.benchmarks.temporal import DicarloKar2019OST
from brainscore.metrics.ost import OSTCorrelation
from candidate_models import score_model, brain_translated_pool
seaborn.set()
seaborn.set_context('paper', font_scale=2)
seaborn.set_style('whitegrid', {'axes.grid': False})
def recurrence_vs_score():
s_identifiers = OrderedDict([
(222, '2,2,2'),
('', '2,4,2'),
(444, '4,4,4'),
(484, '4,8,4'),
(10, '10,10,10'),
])
scores = []
for identifier in s_identifiers:
model_identifier = f'CORnet-S{identifier}'
model = brain_translated_pool[model_identifier]
score = score_model(model_identifier=model_identifier, model=model, benchmark_identifier='dicarlo.Kar2019-ost')
scores.append(score)
# plot
x = list(s_identifiers.values())
y = [score.sel(aggregation='center') for score in scores]
yerr = [score.sel(aggregation='error') for score in scores]
pyplot.figure()
gray, pink = '#808080', '#D4145A'
pyplot.bar(x, y, yerr=yerr, width=.5, color=pink)
pyplot.xticks(rotation=45)
pyplot.xlabel('recurrent steps')
pyplot.ylabel('OST score')
pyplot.tight_layout()
seaborn.despine(right=True, top=True)
for extension in ['png', 'pdf', 'svg']:
pyplot.savefig(os.path.join(os.path.dirname(__file__), '..', 'results', 'osts', f'ost-recurrence.{extension}'))
def prediction_vs_target():
class MetricHook(OSTCorrelation):
def __init__(self):
super(MetricHook, self).__init__()
self._predicted_osts, self._target_osts = [], []
def correlate(self, predicted_osts, target_osts):
self._predicted_osts = np.concatenate((self._predicted_osts, predicted_osts))
self._target_osts = np.concatenate((self._target_osts, target_osts))
return super(MetricHook, self).correlate(predicted_osts, target_osts)
metric_hook = MetricHook()
benchmark = DicarloKar2019OST()
benchmark._similarity_metric = metric_hook
model = brain_translated_pool['CORnet-S']
score = benchmark(model)
if hasattr(score, 'ceiling'):
score = score.raw # use unceiled score
correlation = score.sel(aggregation='center')
t, p = scipy.stats.ttest_ind(score.raw.values, [0] * len(score.raw.values))
num_bins = 5
predicted_osts, target_osts = metric_hook._predicted_osts, metric_hook._target_osts
non_nan = np.logical_and(~np.isnan(predicted_osts), ~np.isnan(target_osts))
predicted_osts, target_osts = predicted_osts[non_nan], target_osts[non_nan]
min_x, max_x = predicted_osts.min(), predicted_osts.max()
stepsize = (max_x - min_x) / num_bins
bins = np.arange(min_x, max_x, stepsize)
binned_values = OrderedDict()
for bin1, bin2 in zip(bins, bins[1:].tolist() + [np.inf]):
mask = np.array([bin1 <= x < bin2 for x in predicted_osts])
y = target_osts[mask]
binned_values[bin1 + stepsize] = y
binned_x, binned_y = list(binned_values.keys()), list(binned_values.values())
binned_y_means, binned_y_err = [np.mean(y) for y in binned_y], [scipy.stats.sem(y) for y in binned_y]
_plot(binned_x, binned_y_means, yerr=binned_y_err, correlation_p=(correlation.values.tolist(), p),
filename='fig5', plot_type='errorbar')
def _plot(x, y, yerr=None, filename='osts', plot_type='scatter',
trend_line=True, correlation_p=None):
x, y, yerr = np.array(x), np.array(y), np.array(yerr)
seaborn.set()
seaborn.set_context('paper', font_scale=2)
seaborn.set_style('whitegrid', {'axes.grid': False})
pyplot.figure()
plot = getattr(pyplot, plot_type)
if plot_type == 'errorbar':
idx = x.argsort()
plot(x[idx], y[idx], yerr=yerr[idx], markersize=7.5, elinewidth=.5, fmt='o', color='#808080')
elif plot_type == 'boxplot':
plot(y, positions=x)
elif plot_type == 'violinplot':
plot(y, positions=x, showmeans=True, widths=8)
else:
plot(x, y)
if plot_type in ['bar', 'errorbar']:
pyplot.ylim(min(y) - 10, pyplot.ylim()[1])
if trend_line:
if isinstance(y, list) and isinstance(y[0], list):
import itertools
x = list(itertools.chain(*[[_x] * len(_y) for _x, _y in zip(x, y)]))
y = list(itertools.chain(*y))
z = np.polyfit(x, y, 1)
p = np.poly1d(z)
print("trend line", p)
trend_x = list(sorted(set(x)))
pyplot.plot(trend_x, p(trend_x), linestyle='dashed', color='#D4145A', linewidth=4)
if correlation_p:
correlation, p = correlation_p
p_magnitude = np.round(np.log10(p))
print(f"magnitude of {p} is {p_magnitude}")
pyplot.text(pyplot.xlim()[0] + 10, pyplot.ylim()[1] - 10, f"r={correlation:.2f} (p<{10 ** p_magnitude})")
pyplot.xlabel('$IT_{COR}$ object solution times')
pyplot.ylabel('$IT_{monkey}$ object solution times')
pyplot.tight_layout()
seaborn.despine(right=True, top=True)
target_path = os.path.join(os.path.dirname(__file__), '..', 'results', 'osts', filename)
for extension in ['png', 'pdf', 'svg']:
pyplot.savefig(target_path + "." + extension)
print(f"saved to {target_path}")
if __name__ == '__main__':
fire.Fire()