-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_gat.py
125 lines (98 loc) · 4.75 KB
/
train_gat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
from sklearn.metrics import roc_auc_score
from model import GATModel
import numpy as np
import pandas as pd
import torch
from torch import nn
from torch.optim import Adam
from torch.utils.data import DataLoader
from utils import TabularDataset, DailyBatchSampler
if __name__ == "__main__":
random_seed = 42
torch.manual_seed(random_seed)
np.random.seed(random_seed)
device = 'cuda:1' if torch.cuda.is_available() else 'cpu'
path = "/home/sdh/quant/DNN/dataset"
save_dir = "/home/sdh/quant/DNN/Neutral_Network/checkpoints"
label = pd.read_parquet(os.path.join(path, "label.parquet"))
train_data_range = pd.date_range("2013-01-01", "2018-01-01", freq="1M").strftime("%Y-%m-01")
valid_data_range = pd.date_range("2018-01-01", "2020-01-01", freq="1M").strftime("%Y-%m-01")
test_data_range = pd.date_range("2020-01-01", "2023-08-01", freq="1M").strftime("%Y-%m-01")
x_train = [pd.read_pickle(os.path.join(path, "factor", f"{period}.pkl")).astype("float16")
for period in train_data_range]
x_train = pd.concat(x_train).fillna(0)
y_train = label.loc[x_train.index].fillna(0)
x_valid = [pd.read_pickle(os.path.join(path, "factor", f"{period}.pkl")).astype("float16")
for period in valid_data_range]
x_valid = pd.concat(x_valid).fillna(0)
y_valid = label.loc[x_valid.index].fillna(0)
x_test = [pd.read_pickle(os.path.join(path, "factor", f"{period}.pkl")).astype("float16")
for period in test_data_range]
x_test = pd.concat(x_test).fillna(0)
y_test = label.loc[x_test.index].fillna(0)
train_dataset = TabularDataset(x_train, y_train)
valid_dataset = TabularDataset(x_valid, y_valid)
test_dataset = TabularDataset(x_test, y_test)
train_sampler = DailyBatchSampler(train_dataset)
valid_sampler = DailyBatchSampler(valid_dataset)
test_sampler = DailyBatchSampler(test_dataset)
train_loader = DataLoader(train_dataset, sampler=train_sampler, num_workers=10, drop_last=True)
valid_loader = DataLoader(valid_dataset, sampler=valid_sampler, num_workers=10, drop_last=True)
test_loader = DataLoader(test_dataset, sampler=test_sampler, num_workers=10, drop_last=True)
model = GATModel(input_dim=1447, hidden_size=128).to(device)
optimizer = Adam(model.parameters(), lr=1e-3)
loss_fn = nn.BCEWithLogitsLoss()
best_auc = 0.
for epoch in range(1, 10):
print(f'epoch: {epoch}')
# training
model.train()
train_loss = 0.
for feature, label in train_loader:
feature = feature.squeeze().to(device) # 2171 x 1447
label = label.squeeze().float().to(device) # 2171
pred = model(feature.float())
loss = loss_fn(pred, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item() * label.size(0)
print(f'train loss: {(train_loss / len(train_loader)):.4f}\t')
# validation
model.eval()
valid_loss = 0.
predictions, labels = [], []
with torch.no_grad():
for feature, label in valid_loader:
feature = feature.squeeze().to(device)
label = label.squeeze().to(device)
pred = model(feature.float())
loss = loss_fn(pred, label.float())
valid_loss += loss.item() * label.size(0)
predictions.extend(torch.sigmoid(pred).cpu().numpy())
labels.extend(label.cpu().numpy())
valid_auc = roc_auc_score(labels, predictions)
print(f'valid loss: {(valid_loss / len(valid_loader)):.4f}\t'
f'valid auc : {str(round(valid_auc, 4))}')
if valid_auc > best_auc:
best_auc = valid_auc
torch.save(model, os.path.join(save_dir, 'best_gat_model.pt'))
# testing
# model = torch.load(os.path.join(save_dir, 'best.pt'), map_location=device)
torch.cuda.empty_cache()
model.eval()
test_loss = 0.
predictions, labels = [], []
with torch.no_grad():
for feature, label in test_loader:
feature = feature.squeeze().to(device)
label = label.squeeze().float().to(device)
pred = model(feature.float())
loss = loss_fn(pred, label)
test_loss += loss.item() * label.size(0)
predictions.extend(torch.sigmoid(pred).cpu().numpy())
labels.extend(label.cpu().numpy())
test_auc = roc_auc_score(labels, predictions)
print(f'test loss: {(test_loss / len(test_loader)):.4f}\t'
f'test auc : {str(round(test_auc, 4))}')