-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREINFORCE.py
178 lines (162 loc) · 5.54 KB
/
REINFORCE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
import gym
# import rl_utils
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
class PloicyNet(nn.Module):
def __init__(self, state_dim, hidden_dim, action_dim):
super(PloicyNet, self).__init__()
self.fc1 = nn.Linear(state_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, action_dim)
def forward(self, x):
x = F.relu(self.fc1(x))
return F.softmax(self.fc2(x), dim=1)
class REINFORCE:
def __init__(self, state_dim, hidden_dim, action_dim, gamma, device, learning_rate):
self.policy_net = PloicyNet(state_dim, hidden_dim, action_dim).to(device)
self.optimizer = torch.optim.Adam(self.policy_net.parameters(), lr=learning_rate)
self.gamma = gamma
self.device = device
def take_action(self, state):
probs = self.policy_net(torch.tensor([state], dtype=torch.float).to(self.device))
action_dict = torch.distributions.Categorical(probs=probs)
action = action_dict.sample()
return action.item()
def update(self, transitions):
states_list = transitions['states']
actions_list = transitions['actions']
rewards_list = transitions['rewards']
u = 0
self.optimizer.zero_grad()
for i in reversed(range(len(rewards_list))):
u = self.gamma * u + rewards_list[i]
state = torch.tensor([states_list[i]], dtype=torch.float).to(self.device)
action = torch.tensor(actions_list[i]).view(-1, 1).to(self.device)
log_prob = torch.log(self.policy_net(state).gather(1, action))
loss = -log_prob * u
loss.backward()
self.optimizer.step()
env_name = 'CartPole-v0'
env = gym.make(env_name)
env.seed(0)
torch.manual_seed(0)
state_dim = env.observation_space.shape[0]
hidden_dim = 128
action_dim = env.action_space.n
learning_rate = 1e-3
gamma = 0.98
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
agent = REINFORCE(state_dim, hidden_dim, action_dim, gamma, device, learning_rate)
return_list = []
for i in range(10):
with tqdm(total=100, desc='Iteration %d' % i) as par:
for j in range(100):
episode_return = 0
state = env.reset()
done = False
transitions = {'states': [], 'actions': [], 'rewards': []}
while not done:
action = agent.take_action(state)
next_state, reward, done, _ = env.step(action)
transitions['states'].append(state)
transitions['actions'].append(action)
transitions['rewards'].append(reward)
state = next_state
episode_return += reward
return_list.append(episode_return)
agent.update(transitions) #每采集一条trajectory 就更新参数, 在线策略
if (j + 1) % 10 == 0:
par.set_postfix({'episode': '%d' % (i * 100 + j + 1), 'return': '%.3f' % np.mean(return_list[-10:])})
par.update(1)
episode_list = list(range(len(return_list)))
plt.plot(episode_list, return_list)
plt.xlabel('Episode')
plt.ylabel('Return')
plt.title(f'REINFORCE on {env_name}')
plt.show()
# learning_rate = 1e-3
# num_episodes = 1000
# hidden_dim = 128
# gamma = 0.98
# device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
#
# env_name = "CartPole-v0"
# env = gym.make(env_name)
# env.seed(0)
# torch.manual_seed(0)
# state_dim = env.observation_space.shape[0]
# action_dim = env.action_space.n
# agent = REINFORCE(state_dim, hidden_dim, action_dim, gamma,
# device, learning_rate)
#
# return_list = []
# for i in range(10):
# with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar:
# for i_episode in range(int(num_episodes / 10)):
# episode_return = 0
# transition_dict = {
# 'states': [],
# 'actions': [],
# 'next_states': [],
# 'rewards': [],
# 'dones': []
# }
# state = env.reset()
# done = False
# while not done:
# action = agent.take_action(state)
# next_state, reward, done, _ = env.step(action)
# transition_dict['states'].append(state)
# transition_dict['actions'].append(action)
# transition_dict['next_states'].append(next_state)
# transition_dict['rewards'].append(reward)
# transition_dict['dones'].append(done)
# state = next_state
# episode_return += reward
# return_list.append(episode_return)
# agent.update(transition_dict)
# if (i_episode + 1) % 10 == 0:
# pbar.set_postfix({
# 'episode':
# '%d' % (num_episodes / 10 * i + i_episode + 1),
# 'return':
# '%.3f' % np.mean(return_list[-10:])
# })
# pbar.update(1)
#
# episodes_list = list(range(len(return_list)))
# plt.plot(episodes_list, return_list)
# plt.xlabel('Episodes')
# plt.ylabel('Returns')
# plt.title('REINFORCE on {}'.format(env_name))
# plt.show()
#
# # mv_return = rl_utils.moving_average(return_list, 9)
# # plt.plot(episodes_list, mv_return)
# # plt.xlabel('Episodes')
# # plt.ylabel('Returns')
# # plt.title('REINFORCE on {}'.format(env_name))
# # plt.show()
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#