-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
90 lines (70 loc) · 2.55 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import argparse
import torch
from torch import nn
import numpy as np
from models.visual_encoder import Visual_Encoder
from models.audio_encoder import Audio_Encoder
from models.memory import Memory
from models.decoder import Decoder
import soundfile as sf
from librosa.spec import griffin_lim
from torch.utils.data import DataLoader
import torch.utils.data.distributed
import torch.nn.parallel
import soundfile as sf
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--grid', default="C:\Users\diyad\DIYA\FYP\Project\silentVid2Speech_FYP\dataset")
def train_net():
v_front = Visual_Encoder()
a_front = Audio_Encoder()
mem = Memory()
dec = Decoder()
checkpoint = torch.load("C:\Users\diyad\DIYA\FYP\Project\silentVid2Speech_FYP\checkpoint")
a_front.load_state_dict(checkpoint['a_front_state_dict'])
v_front.load_state_dict(checkpoint['v_front_state_dict'])
mem.load_state_dict(checkpoint['mem_state_dict'])
dec.load_state_dict(checkpoint['tcn_state_dict'])
v_front.cuda()
a_front.cuda()
mem.cuda()
dec.cuda()
test(v_front, a_front, mem, dec)
def test(v_front, a_front, mem, dec, fast_validate=False):
with torch.no_grad():
a_front.eval()
v_front.eval()
mem.eval()
dec.eval()
val_data = DataLoader(
data="C:\Users\diyad\DIYA\FYP\Project\silentVid2Speech_FYP\dataset",
mode='test'
)
dataloader = DataLoader(
val_data,
shuffle=False,
batch_size=args.batch_size * 2,
num_workers=args.workers,
drop_last=False
)
batch_size = dataloader.batch_size
samples = int(len(dataloader.dataset))
for i, batch in enumerate(dataloader):
a_in, v_in = batch
v_feat = v_front(v_in.cuda())
a_feat = a_front(a_in.cuda())
te_fusion, _, _, _ = mem(v_feat, a_feat, inference=True)
te_m_pred, _, _ = dec(te_fusion, None, infer=True, mode='te')
prediction = torch.argmax(te_m_pred.cpu() , dim=1).numpy()
wav_spec = griffin_lim(prediction)
sub_name = args.grid.split('/')[::2]
file_name = args.grid.split('/')[::1]
np.savez(f'./test/spec_mel/{sub_name}/{file_name}.npz',prediction)
sf.write(f'./test/wav/{sub_name}/{file_name}.wav', wav_spec)
a_front.train()
v_front.train()
mem.train()
dec.train()
if __name__ == "__main__":
args = parse_args()
train_net(args)