-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathautoTrain.py
68 lines (54 loc) · 2.14 KB
/
autoTrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/python
"""
autoTrainer.py: version 0.1.0
History:
2017/06/19: Initial version.
"""
# import some useful modules
import argparse
import time
# We have modularize our interface to the simulator
from lib.simenv import Drive
# We have modularize our agent and trainer embedded pipeline
from lib.agent import Agent
from lib.trainer import Trainer
# Our main CLI code, use --help to get full option list
if __name__ == "__main__":
# initialize argparse to parse the CLI
usage = 'python %(prog)s [options] gen_n_model gen_n_p_1_model'
desc = 'DIYJAC\'s Udacity MLND Capstone Project: ' + \
'Automated Behavioral Cloning'
defaultInput = 'gen0/model.h5'
inputHelp = 'gen0 model or another pre-trained model'
defaultOutput = 'gen1'
outputHelp = 'gen1 model or another target model'
defaultMaxRecall = 500
defaultSpeed = 30
maxrecallHelp = 'maximum samples to collect for training session, ' + \
'defaults to 500'
speedHelp = 'cruz control speed, defaults to 30'
# set defaults
parser = argparse.ArgumentParser(prog='autoTrain.py',
usage=usage, description=desc)
parser.add_argument('--maxrecall', type=int, default=defaultMaxRecall,
help=maxrecallHelp)
parser.add_argument('--speed', type=int, default=defaultSpeed,
help=speedHelp)
parser.add_argument('inmodel', type=str, default=defaultInput,
help=inputHelp)
parser.add_argument('outmodel', type=str, default=defaultOutput,
help=outputHelp)
args = parser.parse_args()
# create a trainer
trainer = Trainer(args.inmodel)
# sleep - so keras and tensorflow will allow multiple models...
time.sleep(1)
# create an agent to train
agent = Agent(args.outmodel+'/model-session{}.h5',
maxrecall=args.maxrecall)
# sleep - so keras and tensorflow will allow multiple models...
time.sleep(1)
# Define environment/simulation
sim = Drive(agent.width, agent.height, args.speed)
# train in the environment
sim.start_training(trainer, agent)